
www.manaraa.com

ORIGINAL ARTICLE

Integrating ontologies, model driven, and CNL in a multi-viewed
approach for requirements engineering

Paulo F. Pires • Flávia C. Delicato •

Raphael Cóbe • Thais Batista • Joseph G. Davis •

Joo Hee Song

Received: 21 June 2010 / Accepted: 16 January 2011 / Published online: 17 February 2011

� Springer-Verlag London Limited 2011

Abstract Research in requirements engineering (RE) has

been growing in the last few years. RE researchers are gener-

ally concerned with a set of open issues such as: (i) the need for

a well-defined process to identify and specify the requirements

scope, (ii) suitable mechanisms to support communication

among different stakeholders and development teams involved

in the RE process, (iii) mechanisms to deal with the inherent

volatility of requirements, and (iv) the need for a traceability

scheme to help managing requirements in the downstream

phases of the development process. In this work, we address

some of these open issues by proposing the use of an iterative

and incremental model-driven RE process combined with the

employment of different notations such as controlled natural

language and ontology in each activity of RE process. Based on

the argument that there is no single notation suitable to rep-

resent requirements from the different perspectives of all the

stakeholders and development teams, we propose a RE process

encompassing different views, representing each perspective.

This paper describes the proposed process, its tool support, and

presents a controlled experiment that illustrates the proposal

and evaluates its benefits.

Keywords Requirement engineering process �
Model-driven development � MDA � Ontology �
Controlled natural language

1 Introduction

The success of a software system can be measured by the

degree to which it meets its envisaged purpose. Software

system requirements engineering (RE) can be defined as the

process of discovering such purpose by identifying stake-

holders and their needs and documenting them in a way that

is amenable to analysis, communication, and subsequent

implementation [1]. RE activities aim at managing all the

requirements-related knowledge. It is common that such

knowledge is concretized in a set of artifacts such as use cases,

story boards, natural language documents, and business pro-

cess specifications. These artifacts comprise the so-called

Requirements Document. The production of such document is

often regarded as one of the most difficult activities in the

software development process [2]. The resources applied in

building a solid RE process have been shown to pay off.

However, studies conducted by renowned IT consulting

groups as the Standish, the Gartner, and the Forrester groups

have pointed out that a large number of projects still fail to

achieve their goals and some of them are even canceled due to

requirements-related issues [2–4].

P. F. Pires (&) � F. C. Delicato

Department of Computer Science, Institute of Mathematics,

Federal University of Rio de Janeiro (UFRJ),

Bloco E, CCMN/NCE, Cidade Universitária,

PO BOX 68.530, Rio de Janeiro, RJ 21941-590, Brazil

e-mail: paulo.f.pires@gmail.com

F. C. Delicato

e-mail: fdelicato@gmail.com

R. Cóbe � T. Batista

Department of Informatics and Applied Mathematics (DIMAp),

Federal University of Rio Grande do Norte (UFRN),

Natal, RN 59072-970, Brazil

e-mail: natalpunk@gmail.com

T. Batista

e-mail: thaisbatista@gmail.com

J. G. Davis � J. H. Song

School of Information Technologies J12, University of Sydney,

Sydney, NSW 2006, Australia

e-mail: joseph.davis@sydney.edu.au

J. H. Song

e-mail: json8472@uni.sydney.edu.au

123

Requirements Eng (2011) 16:133–160

DOI 10.1007/s00766-011-0116-1

www.manaraa.com

According to Pressman [5] and Sommerville [6], a typical

RE process is divided into three phases, which are executed in

an iterative way: (i) requirements elicitation and analysis, (ii)

requirements specification, and (iii) requirements validation.

During these phases, the following activities are commonly

performed:

1. Knowledge acquisition [7–9], which is the process of

gathering requirements about the system to be built. This

process is usually performed by the requirements engineer

through interviews, group brainstorms with stakeholders, or

analyses of reports, forms, spreadsheets, and/or any other

type of information relevant to the system development;

2. Knowledge representation [10–12] whose goal is to

facilitate the communication and sharing of the

gathered requirements between system designers and

stakeholders (end-users, procurement agents, etc.) as

well as to document such information for further use.

Such documentation can be both textual and graphical.

3. Knowledge conflict management and requirements val-

idation [13–15] aim at assuring that the gathered

requirements are not conflicting with each other and that

they meet all client demands. These activities encompass

the understanding of and reasoning on large system

specifications, the propagation of design decisions

throughout the system description, and the merge of

possibly conflicting requirements that have been acquired

from groups of analysts working simultaneously.

Besides these common activities, since requirements are

inherently volatile, knowledge evolution management

[16–20] is another import activity that has not always been

considered in traditional RE processes. Evolution of

requirements refers to the changes that take place in a set of

requirements after the initial phases of requirement engi-

neering [21]. According to such definition, changes in

requirements that may happen in initial elicitation, analy-

sis, specification, and validation phases are not evolution-

ary. Such changes in requirements are additions, omissions,

or modifications of requirements [22]. Requirements

commonly evolve due to the knowledge brought up during

software development or they change because of unfore-

seen organization needs, environmental pressures, or the

advent of new technologies [16]. Requirements also change

over time because they are collected from several different

sources (typically interviews with stakeholders), which

may have different or even contradictory points of view

about the system to be built [23].

1.1 The addressed problem: open issues in the RE

activities

Since a good requirement engineering process brings

valuable benefits in the development of software systems

such as preventing errors, improving the quality of the final

product, and reducing risks, both academia and industry have

been investing in research focusing on improving the afore-

mentioned requirement engineering activities. Researchers

are especially interested in identifying the most significant

drawbacks of the existing requirement models and processes.

Some of these research endeavors [16, 24–27] have already

given some clues on what is lacking in extant RE processes.

According to these authors, the most common open issues in

the RE are

1. The need for a well-defined process to identify and

specify the requirements scope;

2. Better mechanisms to support communication among

different stakeholders and development teams involved

in the RE process;

3. Better mechanisms to deal with the inherent volatility

of requirements; and

4. The need for a traceability scheme to help manage

requirements in the downstream phases of the devel-

opment process.

Each open issue is directly related to one or more of the

RE activities. In the following sections, we briefly discuss

these issues and their inter-relationships and review current

research efforts that address each open issue.

1.1.1 Scope issues

The system scope is defined in the RE activity of knowl-

edge acquisition. Such RE activity aims at establishing the

boundary conditions and the goal for the target system.

Currently, knowledge acquisition is mainly carried out by

the requirements engineer who has to interpret the outcome

of the interviews with clients. During the interpretation

process, the requirements engineer should be able to

distinguish the useful information from the useless infor-

mation provided by the stakeholders [5, 17]. Misinter-

pretations in the activity of knowledge acquisition can lead

to requirements that are incomplete, not verifiable,

unnecessary, and unusable. To cope with this requirement

scope issue, several works have proposed methodologies to

acquire knowledge directly from stakeholder descriptions.

The authors in [28–30] suggest the employment of a

restricted natural language (i.e., controlled natural lan-

guages) to represent the requirements. Elicitation meth-

odologies that produce requirements in the form of specific

modeling RE notations such as use cases [5] are prone to

generate ambiguous requirements to the stakeholders.

These requirements may not be verifiable by the stake-

holders since they cannot adequately understand the used

notation. In contrast, the use of controlled natural lan-

guages allows requirements to be represented in a way

closer to the natural human representation while keeping it

134 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

free of ambiguities and imprecision, thus minimizing

misinterpretations since users can easily validate such

descriptions.

1.1.2 Communication issue

After gathering requirements from the stakeholders, the

knowledge representation activity takes place. In this

activity, the appropriate notation(s) to represent require-

ments is crucial to facilitate communication among

the different development teams and stakeholders [31].

A misjudgment during the knowledge representation may

lead to an RE process that suffers from communication

issues. Many works [31–33] argue that the employment

and integration of different notations are necessary to

represent requirements according to the point of view of

different stakeholders and development teams. Moreover,

there is a consensus in the RE community that such nota-

tions should be standardized in order to minimize com-

munication issues. For instance, the different UML views

have been widely used as standard notations to represent

requirements [6].

1.1.3 Volatility issue

The next activities in a RE process are knowledge conflict

management and requirements validation. A failure during

the validation of the new requirements may lead to the

occurrence of problems related to volatility issues in the RE

process. Research in the area of requirements validation

commonly use formal logic and inference mechanisms to

check the consistency of the requirements and to assure

that they are not in conflict with each other. Following this

idea, Wang et al., Lenzerini, Kaiya and Saeki [13, 15, 34]

proposed the use of first-order logic and ontologies to

specify and validate requirement models.

The knowledge evolution management activity is also

related to the occurrence of volatility issues in the RE

process. The main approach to deal with the inherent

volatility of requirements is to consider that the require-

ments engineering process of eliciting, specifying, and

validating should not be executed only once during system

development, but rather should be an iterative and incre-

mental process [16, 20].

1.1.4 Traceability issue

Both conflict management and knowledge evolution

activities are deeply related to the traceability scheme. The

RE traceability is concerned with relating requirements

with other system artifacts and it allows the life cycle of a

requirement artifact to be followed both forwards and

backwards throughout a software development process

[35]. Such links between artifacts should allow the

recording of meta-data about the RE process [36] such as

the stakeholder name, who the interviewer was, when the

interview occurred, etc. [37]. A traceability scheme can

help to identify changes in requirements, predicting their

impacts on the later development process phases, thus

reducing the costs associated to requirements volatility.

Works in the traceability [37, 38] area are mostly con-

cerned with proposing (semi-) automatic processes to

maintain trace dependencies (element that links to artifacts)

that are updated throughout all views used to represent

requirements. Researchers are also concerned with defining

the means to trace the artifacts contributors (the agents who

have contributed to artifact production) as, for instance, the

Contribution Structures proposed by Gotel et al. [36].

1.2 The proposed approach

The main goal of this work is to address the aforemen-

tioned RE open issues through the use of an iterative and

incremental model-driven RE process combined with the

employment of different notations in each activity of such

RE process. As already mentioned, there is no single

notation suitable to represent requirements from the dif-

ferent perspectives of all the stakeholders and development

teams. Therefore, we propose a RE process encompassing

different views, representing each perspective.

In order to represent the requirements from the client’s

point of view, we propose the adoption of Controlled Nat-

ural Language—CNL [39]. This adoption aids the activities

of knowledge acquisition and knowledge representation. It

provides a notation close to the client native language,

which is fully understandable by both requirements engi-

neer and client, thus facilitating the comprehension of,

reasoning on, and validation of the requirements specifi-

cation. Therefore, the use of CNL partially addresses both

scope and communication issues.

To represent the requirements from the development

team’s point of view, we propose the use of ontologies.

This representation is initially built by using the system

descriptions specified in CNL, further refined, and incre-

mented by the requirements engineer. The development

team needs a more structured and manageable representa-

tion of requirements in comparison with the clients’.

Moreover, they need mechanisms to access, search, and

reason over the requirements. The use of ontologies fulfills

these needs; it allows a high-level and precise representa-

tion of a given domain in terms of the key concepts and

their relations. Moreover, it is possible to reason about a

given ontology using available reasoning mechanisms. In

the proposed approach, ontologies are used in the knowl-

edge representation, validation and evolution RE activities,

addressing communication and volatility issues.

Requirements Eng (2011) 16:133–160 135

123

www.manaraa.com

The client and development views must be integrated in

order to avoid inconsistencies and conflicts, thus address-

ing communication issues, and to allow the traceability of

requirements between such views. We propose a model-

driven [40] solution to integrate such views and keeping

them consistent. More specifically, we adopted model-

driven architecture (MDA) [41] approach. The use of

automatic model transformations allows the seamless

synchronization of these views and also helps in the pro-

vision of a traceability scheme. In our work, the MDA

paradigm provides the underpinning of the RE process that

ties together all the activities. Besides, its use minimizes

the negative effects of requirements evolution, since MDA

transformation can assure that requirements are synchro-

nized and up to date in all views. Regarding the MDA

abstraction levels [40], we focused on the Computer

Independent Model, CIM, to represent the requirements

document, since requirements should not contain any

information on the technology to be used in the imple-

mentation of the system.

In this paper, we present the proposed model-driven RE

process and show how each different notation (ontologies

and CNL) is used to represent requirements in each con-

sidered view. Moreover, we present the tool implemented

to support the proposed process. We also report on a

controlled experiment [42] conducted to illustrate the

proposal and assess its usability and benefits. The

remainder of this work is organized as follows. Section 2

details the proposed approach. Section 3 describes the

implemented tool. Sections 4 and 5 present the controlled

experiment and its analysis. Section 6 describes related

work, and finally, Sect. 7 discusses the results obtained and

point out future research directions.

2 Multi-viewed approach for requirements engineering

To encompass all the aforementioned activities involved in

the requirement engineering as well as to address the open

issues related to each activity, we propose an iterative and

incremental model-driven RE Process [40]. The phases

encompassed in our process are aligned with traditional RE

processes, as defined in the literature [5, 6], although we

have proposed new activities in some of these phases. In

our approach, the Requirements Document is represented at

the MDA Computational Independent Model (CIM)

abstraction level. To address the different needs, we pro-

pose the division of the CIM in two views: the client view

and the development team view. It is important to note that

although a software system encompasses both static

(structural) and dynamic (behavioral) features, our work is

focused only on the static representation of the system

(dynamic representation is out of scope of our proposal).

Even though we focus on the CIM model, the outcome

of the proposed process is a skeleton of an MDA Platform

Independent Model (PIM) representing the gathered

requirements. Therefore, our model-driven RE process also

encompasses a phase to generate this PIM. We suggest the

adoption of UML (Unified Modeling Language [43]) class

diagrams as the main notation for this PIM. In fully com-

pliant MDA development process, such artifact will be

useful in the downstream phases of the system develop-

ment lifecycle. The proposed PIM, represented as a UML

class diagram, also aims to facilitate the communication

through the entire software development lifecycle since the

design phase often uses UML notations to represent the

system [44].

The following sections describe the models and views

used in our proposal and show how these models and views

are used to address the RE open issues discussed in fore-

going. Details of the proposed process follow.

2.1 Proposed models and views

We argue that due to its complexity, the knowledge

encompassed in RE cannot be fully expressed with a sin-

gled view model. To deal with this expressiveness prob-

lem, we propose organizing the requirement specification

in two main abstraction levels, the client view and the

development team view. In the proposed MDA RE pro-

cess, the client view lays at the CIM level while the

development team crosses both the CIM and PIM levels.

We also propose a mapping strategy between these two

views which facilitates the communication between the

different actors involved in the RE process, thus addressing

communication issues. The proposed mapping strategy is

also able to trace dependencies between views, making it

possible to follow the requirements throughout the devel-

opment cycle, keeping metadata about the requirements

elicitation process. Such capability addresses the trace-

ability issue. For instance, it enables to know, at a design

phase, which stakeholder has provided information about a

given entity of the system.

2.1.1 CIM: Client view

This view is used in the RE activities of knowledge

acquisition and representation to build a representation of

the gathered knowledge at an abstraction level that facili-

tates the client to understand such knowledge, thus pro-

moting his/her active participation in the requirements

elicitation process. To achieve this goal, requirements are

represented in this view through a controlled natural lan-

guage (CNL). This approach borrows ideas from existing

research on CNL such as [29, 45]. However, it differs from

those in that it is based on the MDA approach as well as

136 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

being aligned to existing RE processes. Representing

requirements with natural language unburdens the stake-

holders of learning specific RE modeling notations, which

are not typically part of their expertise. Therefore, the

adoption of natural languages facilitates the communica-

tion between stakeholders and requirements engineers,

minimizing potential misunderstandings and misinterpre-

tations, thus partially addressing communication issues.

The knowledge represented in the client view is

obtained through interviews or documents related to the

business being modeled. These documents have to be

aligned with the restrictions imposed by the use of CNL, so

they need to be re-structured according to the CNL syntax

and grammar. In our process, we used the Attempto Con-

trolled English—ACE [39] CNL. Our choice for the ACE

controlled language was based on its expressiveness, sim-

plicity to learn and use and on the fact that it is also

powerful enough to represent the fundamental concepts

used to specify requirements, such as entities, relationships

and restrictions.

Current tool support for ACE [46] does not have a

defined traceability scheme. Therefore, in order to deal

with traceability issues we have added the capability of

tagging ACE sentences in our client view. Tags are

metadata used to mark sentences. Using tags allows

keeping track of when a statement was given, who made

that statement and what is it about (its subject). The tags

are kept through all the RE process. So, it is possible to

know which concepts were produced and by whom, in each

interview. For example, it is possible to know that the

domain class client is related to the concept client that first

appeared during an interview with the business specialist

on December 10, 1966. The tagging mechanism is highly

generic and any kind of metadata information can be

assigned to sentences.

2.1.2 CIM: Development team view

The needs of the development team regarding the handling

of requirements are different from the client needs. Based

on the study by Kaiya et al. and Breitman et al. [34, 45], we

enumerated the most common of such needs.

1. A more structured notation to represent requirements

that allows identifying concepts, their properties and

relationships;

2. Strategies to manage the complexity and evolution of

requirements;

3. Tools that facilitate the access to, authoring of,

reasoning on, and searching for requirements.

In order to fulfill all these needs, the proposed Devel-

opment Team View at the CIM level is represented through

a domain ontology. More precisely, we propose the use of

OWL [47] to model ontologies in this view. The first need

is addressed since the use of ontologies has the potential to

allow a high-level and precise representation of a given

domain in terms of its concepts and their relations.

The second need is addressed by two mechanisms that

are available when using ontologies: reasoning and merg-

ing, as well as by a semi-automatic MDA mapping pro-

vided as part of our proposal. The use of ontologies allows

reasoning about the knowledge they represent. Commonly,

the reasoning encompasses two activities. The first one is

the consistency checking, where the reasoning mechanism

verifies if there is any individual breaking any class con-

straint (ABox reasoning). The reasoning mechanism also

verifies if any class structural constraint is violated (TBox

reasoning), for instance, if any disjoint class have descen-

dants in common. The second activity executed by a rea-

soner is the taxonomic classification, where the mechanism

uses the logical description of the concepts and their rela-

tionships and infers new relations between concepts. All

the activities performed by a reasoner are a valuable aid for

managing complex requirements since they provide the

possibility of validating relationships, inferring new rela-

tionships among concepts, and identifying conflicts among

requirements at an early developmental stage. The evolu-

tion and change of requirements represented as ontologies

can be managed by using well-established ontology

merging strategies, such as in references [48–50]. The

merging enables reusing part of or the entire previous

version of a domain ontology (requirements specification).

In our proposed process, the development team view is

built by a (semi-)automatic MDA mapping that takes the

client view (in CNL) as input and through a set of trans-

formations generates a preliminary domain ontology as

output. Therefore, the MDA mapping aids managing the

complexity of requirements since the outcomes of inter-

views are automatically parsed and transformed into

structured knowledge, i.e., concepts, properties and

relationships.

The third need is achieved by using ontologies notations

and languages that are supported by standards bodies such

as OMG and W3C.1 Standardization efforts have been

producing specifications that are broadly implemented as

tools provided by several companies, many of them as

open-source solutions. Such tools provide a set of func-

tionalities to easily access and handle requirements.

Regarding the RE open issues addressed in this paper,

the adoption of ontologies to represent the proposed

Development Team View deals with both communication

and volatility issues. Communication is addressed by the

ontology capability of providing a sharable domain

knowledge that stakeholders and developers should agree

1 http://www.w3c.org.

Requirements Eng (2011) 16:133–160 137

123

http://www.w3c.org

www.manaraa.com

on. Volatility is addressed by ontology reasoning and

merging mechanisms which contribute to keep the

requirement knowledge base free of inconsistencies pos-

sibly generated by inclusion of new requirements and/or

changes in old requirements. The MDA mapping used to

convert the CNL to ontology addresses both communica-

tion and traceability issues. From the development team

point of view, since the transformation between different

notations (CNL to ontology) is automatically done by the

mapping, it avoids misinterpretation or human errors. The

traceability is addressed by the automatic propagation of

CNL tags to ontology annotations [47].

2.1.3 PIM: Development team view

In order to help the development team in the design phase,

our approach generates a PIM skeleton in UML notation to

avoid the need of starting the modeling from scratch. The

provided PIM contains an UML class diagram, with the

mapped entities and their relationships derived from the

CIM domain ontology. The provision of this PIM skeleton

through an automatic MDA transformation addresses both

the communication and the traceability issues. Similarly to

the approach to generate the ontology from CNL state-

ments, since the transformation between ontology and

UML classes is automatically done, it also avoids misin-

terpretation or human errors. The transformation process

responsible for the PIM generation is also able to propagate

the metadata about interviews from ontology and annota-

tions to class stereotypes, thus ensuring that the informa-

tion provided during the client interviews is present at the

PIM classes. Such information is used for traceability

purposes, helping to group classes, for instance, by the

interview subject.

2.2 Proposed process

The proposed model-driven RE process that we developed

follows the RE process definition stated by Pressman [5] and

Sommerville [6]. It is divided into the following phases, which

are executed in an iterative way: (i) requirements elicitation

and analysis, (ii) requirements specification, and (iii)

requirements validation. However, we added new activities to

manage requirements evolution and also to produce the UML

class diagram that is used as a start-up for the design phase.

Each activity in our process is carried out by a specific

actor. We have included one new actor to the set described

in works as [5, 6], namely the ontology engineer. There-

fore, the set of actors in our process is composed of:

• Requirements engineer: responsible for collecting

information from the client and registering all infor-

mation that is useful for the system modeling.

• Ontology engineer: responsible for managing require-

ments represented as a domain ontology, aided by tools

for ontology analyze, merge and validation.

• System Analyst: responsible for the system design.

The process with its artifacts and actors is illustrated in the

UML Activity Diagram in Fig. 1.

The first phase of our process is the requirements elic-

itation and analysis. The activities performed in this phase

are conducted by the requirements engineer with the main

goal of gathering system information from the stakehold-

ers. Such activities are (i) interview stakeholders (activity

1a, Fig. 1), (ii) review documents (activity 1b, Fig. 1), and

(iii) register relevant information (activity 1c, Fig. 1).

Often the interviews and documents provided by the client

include unnecessary information, so the relevant informa-

tion has to be initially filtered in order to build a concise

view of the system requirements. Activity 1c is responsible

for accomplishing such goal. In this activity, the require-

ments engineer builds a system description in CNL repre-

sented in the proposed RE process as the Client view of the

system. In our proposal, CNL descriptions are written using

Attempto Controlled English—ACE [39]. In order to pro-

vide traceability support, during this activity the require-

ments engineer must include metadata information about

the process of requirement acquisition, such as date of the

interview, name of the interviewed stakeholder and subject

of the interview. Such metadata information is stored as

tags at each sentence of the interview.

The second phase is the RE specification, in which the

CIM of the development team view is built, i.e., the system

domain ontology. The activities performed in this phase

are: build partial domain ontology (2a.), search for reusable

ontologies (2b), and merge ontologies (2c). The partial

domain ontology model is automatically derived from the

CNL descriptions through a MDA transformation provided

as part of the Attempto project [39]. Such partial ontology

encompasses all the knowledge described in the CNL

sentences produced in the previous phase.

After building the partial ontology, the ontology engi-

neer can augment it by reusing some previously defined

knowledge base (activity 2b). Since we are proposing an

iterative and incremental process, such predefined ontology

may have been built on previous iterations of the process,

through automatic MDA transformations from CNL to

ontology. On the other hand, this predefined ontology can

also be a well-known domain ontology used to represent a

specific aspect of the system, for example, a monetary

ontology to represent monetary concepts. Once a set of

ontologies is selected for reuse, an ontology merging

operation is carried on (activity 2c). Such reuse of ontol-

ogies is not mandatory (however it is encouraged), and the

process can go on without any ontology merging. In this

138 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

case, the partial ontology is promoted to domain ontology.

By the end of the second phase, the CIM view is complete

and ready to be validated.

The third phase of the proposed process is the require-

ments validation that aims to find inconsistencies or con-

flicts at the requirements knowledge base. The activities

performed in this phase are: validate ontology (activity 3a),

analyze sentences (3b), and fix problematic sentences (3c).

To accomplish the goal of such phase, we propose a (semi-

)automatic approach that uses inference mechanisms

implemented by ontology reasoners. During the validation

phase, two types of inconsistency are checked: ABox and

TBox. TBox sentences describe a system in terms of con-

trolled vocabularies, for example, a set of classes and

properties, while ABox are TBox-compliant sentences

about instances of those vocabularies. Therefore, ABox

inconsistencies refer to inconsistencies between facts

(individuals) and structural rules (concepts and relations),

while TBox inconsistencies are inconsistencies between

concepts and relations constraints (constraints violations).

If ABox inconsistence occurs, the inconsistent knowledge

base becomes locked until the conflict is solved. This

happens because most of the reasoners are unable to reason

over a knowledge base with this kind of inconsistency.

Whenever any of these two types of inconsistence occurs,

the process cannot go forward, i.e., it enters in a loop and

only leaves the loop if the problem is fixed.

The outcome of the ontology validation (activity 3a) is a

list of detected inconsistencies which includes the concepts

related to such inconsistencies as well as the CNL sen-

tences that originated each of these concepts. The rela-

tionships among concepts and CNL sentences are tracked

down by the traceability scheme provided by the proposed

approach (see details in Sect. 2.2).

The requirements engineer analyzes the generated

inconsistency list (activity 3b) verifying if it is possible to

solve the detected problems by himself/herself. If so, the

requirements engineer performs the necessary modifica-

tions in the existent CNL system descriptions (changing

and/or removing the problematic sentences) to resolve the

Fig. 1 UML 2.0 activity

diagram of the proposed process

Requirements Eng (2011) 16:133–160 139

123

www.manaraa.com

conflicts (activity 3c). Following, the process is resumed to

activity 2a. Otherwise, new interviews or document

reviews should be carried out. In this case, the process is

resumed to its initial activities (1a, 1b).

Besides detecting inconsistencies in the knowledge base,

the use of a reasoner during the validation phase has also

the power to uncover new relationships of type is-a

between the concepts, during the taxonomic classification

occurred as part of the ontology validation (activity 3a).

These relationships are built based on inference rules

executed against the domain ontology concepts (i.e.,

ontology classes) and their constraints that were defined by

the CNL declarations and transformed into ontology suf-

ficient constraints. These constraints are typically built

from sentences that start with ‘‘Every’’ or ‘‘Everything’’

and define new concepts from old ones or from object

properties. For example: suppose that at a medical domain

scenario, a stakeholder declared that ‘‘Every person that

has a disease is a patient’’, where the concept patient is

defined in function of the has property. This sentence also

constrained the has property range to only accept values of

the disease concept, i.e.

C ¼ f8x 2 Person9y 2 Disease jj hasðx; yÞ
! x 2 Patientg

ð1Þ

Afterward, another stakeholder states that ‘‘Every victim is

a person and every victim has a disease’’ i.e.

V1 ¼ f8x 2 Victim jj x 2 Persong ð2Þ
V2 ¼ 8x 2 Victim9y 2 Disease jj has x; yð Þg ð3Þ

Thus, during the taxonomic process, the reasoner can infer,

based on axioms 1, 2 and 3 that ‘‘Every Victim is a Patient’’

i.e.

P ¼ f8x 2 Victim jj x 2 Patientg ð4Þ

The next phase of our RE process is the generation of the

PIM skeleton, which is not commonly included within

traditional RE processes. We consider this phase as a

transitional phase to the next software development phase.

The goal of this phase is to automatically build a useful

artifact for the design phase of software development life

cycle. The PIM generation is carried on by a System

Analyst that executes a model-driven transformation taking

as input the RE knowledge base generated in the developer

team’s view and producing the PIM as the output. In this

phase two activities are performed: filter relevant entities

(activity 4a) and generate PIM (activity 4b). In the activity

4a the System Analyst selects the relevant information

from the domain ontology. Finally, in activity 4b, the PIM

skeleton is generated from the selected elements of the

domain ontology, through a set of MDA transformations

provided by the tool developed to support our approach.

3 Tool support

We developed a tool to support the proposed RE process,

named RETool, comprising a Protégé plug-in, named

REView, as well as a set of components, which implement

functionalities related to model-driven transformations.

Figure 2 depicts the tool architecture, with its components

drawn in gray. The REView plug-in is responsible for

registering the descriptions written in CNL, merging and

validating ontologies. The model-driven transformation

components are responsible for transforming CNL

descriptions into OWL ontologies and building UML class

models from such OWL ontology models. The following

subsections describe the details of the implemented

RETool.

3.1 The REView plug-in

The developed REView plug-in (Fig. 2) builds on the

existing ACEView plug-in [46] and incorporates several

standard capabilities of Protégé. We chose the Protégé

editor [51] for handling ontologies due to its popularity as

an OWL editor, simplicity to use and availability of its

source code. Moreover, Protégé is the native platform for

ACEView, which is one of the few currently available ACE

language editors.

In the implemented plug-in, ACEView is used as a CNL

editor, thus every interaction with the CNL descriptions

occurs through the ACEView. We extended the ACEView

to add the tagging capability in order to implement our

interview traceability scheme. The implemented extension

is represented as the component ACEViewWithTagging in

Fig. 2. The requirements engineer uses the editor to

annotate each CNL statement with a set of tags that iden-

tifies the interview to which the sentence belongs to. To

encapsulate an interview, we proposed a structure called

Subject-Date-Stakeholder—SDS, which is composed of

information (tags) about the requirements elicitation pro-

cess (date of interview, name or role of Stakeholder and

subject of the interview). For example, suppose that at 1

April 2009 the requirements engineer interviewed a secu-

rity analyst from a given company in order to collect

information about the user control subsystem. The SDS

tags for this situation would be: ‘‘User Control’’, ‘‘1/4/

2009’’ and ‘‘Security Analyst’’. The SDS structure must be

filled for each sentence. The set of sentences marked with

the same SDS composes a complete interview.

In the current version of the implemented REView plug-

in, the activities of ontology merging and validating are

accomplished by the Pellet reasoner [52]. However, we

have tested other reasoners, such as Fact?? [53], and they

provided the same results of Pellet, indicating that different

reasoners can be possibly chosen for use by the ontology

140 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

engineering without affecting the outcome of the proposed

RE process.

Besides extending the ACEView plug-in with a trace-

ability scheme for interviews, the REView plug-in defines a

set of views that aid both the requirements engineers and

the ontology engineers to interact with the implemented

RETool. Such views are represented as components tagged

with the \\view[[stereotype in Fig. 2. For each created

new view, we implemented a new component, responsible

for listening to Protégé events and showing in the respec-

tive view the correct information according to such events.

Following we discuss each one of these views.

1. ACESnippetEditor (Fig. 3a): this view is used to

create, remove and edit ACE sentences (snippets in

the ACEView plug-in jargon) along with user defined

tags and the SDS tags associated with each sentence.

This view is composed of: (a) a list of all sentences

registered by the requirements engineer; (b) fields to

edit and inspect ACE sentences; and (c) fields for

inspecting metadata about the registered ACE sen-

tences (for instance the list of user tags used to

annotate a sentence);

2. ACEIndexView (Fig. 3b): this view lists ontology

concepts (OWL classes) and the ACE sentences that

make reference to them;

3. ClassSortedByTagsView (Fig. 3c): this view groups

ontology classes according to the general tags that

annotate them;

4. ACESubjectIndexView (Fig. 3d): this view groups

ACE sentences by the subject tag which annotates

them;

5. ACEDateIndexView (Fig. 3e): This view groups ACE

sentences by the date tag which annotates them;

6. ACEInterviewIndexView (Fig. 3f): This view groups

the ACE sentences by the stakeholder tag which

annotates them;

7. ValidationView (Fig. 4): this view provides the func-

tionality to check the consistency of the underlying

ontology and, whenever there are conflicting concepts,

it shows the snippets which contain them, classified by

subject and date tags.

3.2 Components for MDA transformations

The implemented RETool, encompasses three different

model-driven transformations. The first transformation has

the goal of translating ACE textual descriptions into OWL

files representing the domain ontology. Such translation

process synchronizes the client view with the first model of

the development team view. The first model-driven trans-

formation is performed by the ACE Parser Engine—APE

[54] component, developed and provided by the Attempto

project. This component provides features to edit and parse

textual descriptions as well as to build ontologies from

such descriptions. We extended the ontology metamodel of

APE to add the tagging mechanism used for implementing

Fig. 2 RETool architecture

Requirements Eng (2011) 16:133–160 141

123

www.manaraa.com

the traceability scheme. The extended metamodel is

included in the ACEViewWithTagging component in

Fig. 2. The tagging was implemented by a generic mech-

anism so that any kind of metadata information can be

associated to the sentences, besides the proposed SDS

itself. The output of APE is an OWL ontology represented

in XML. However, to be used as input in the further chain

of MDA transformations performed by our tool, we chose

to adopt the OMG standard metamodel for ontologies,

ODM (Ontology Definition Metamodel [55]). We made a

minor modification in ODM, by introducing the Tag con-

cept, which is responsible for keeping the SDS metadata

(for purposes of traceability, as previously explained).

Therefore, the second transformation in RETool is per-

formed by the OWLParser component (represented in the

package Ontology of Fig. 2) using a set of ATL rules that

are executed against the XML metamodel. We chose the

ATL model transformation language [56] to implement

these transformations due to its maturity level and active

development community.

The third transformation has the goal of translating the

domain ontology into an UML class diagram. This trans-

lation process synchronizes the high-level model of the

development team view (CIM level represented as an OWL

ontology) with a lower level model of the development

team view (PIM level represented as an UML class dia-

gram) that is more suitable to be manipulated in further

software development phases. This third model-driven

transformation, represented as the package ATL in Fig. 2,

is performed by a set of ATL rules that map OWL concepts

formally specified according to ODM into UML classes.

Besides ODM, the implemented RETool makes use of

two other metamodels: UML [57] and XML [58]. The

XML metamodel is used to build ODM models from XML

files and the UML metamodel is used to build the output

model produced by the implemented ATL rules. The cur-

rent version of the RETool uses the OMG UML metamodel

provided by the eclipse UML2 project.2 To accommodate

the traceability scheme, we opted for using the UML

extensibility mechanism, named stereotypes [43]. A

noticeable advantage of this design decision is that the

UML metamodel can be used without modifications.

Fig. 3 The views of the

implemented REView plug-in

Fig. 4 ACEView’s validation view

2 http://www.eclipse.org/uml2.

142 Requirements Eng (2011) 16:133–160

123

http://www.eclipse.org/uml2

www.manaraa.com

Therefore, the output of the ATL rules mapping is an UML

model usable by any modeling tool compatible with the

standard UML2 metamodel.

4 The controlled experiment

We have conducted an experiment in order to determine

whether the proposed process and its tool support meet the

goals stated in Sect. 1 and also to assess the complexity and

benefits of using the tool when compared to traditional

methods for requirement elicitation and representation. The

planning and execution of the experiment reported in this

section are based on the guidelines proposed in [59].

4.1 Experiment goals

We define the objectives of the experiment using the

template of the Goal/Question/Metrics (GQM) method [60]

as suggested by [59]. GQM is a top-down approach to

establish a goal-driven measurement system for software

development. The approach is divided into three levels:

(i) the organizational goals which define measurement

goals (conceptual level), (ii) the questions to address the

previously stated goals (operational level), and (iii) the

metrics that provide answers to the defined questions

(quantitative level). GQM aims at defining the measure-

ment goals according to the established business/research

goals. Our primary research goal is to assess the effec-

tiveness of our process and RETool in dealing with RE

open issues. Additionally, we defined a secondary goal of

assessing the usability and actual applicability of the pro-

posed tool. We discuss below our measurement goals

written according to the GQM template defined by Basili

et al. [60].

First goal Analyze the proposed process and RETool for

the purpose of evaluating their effectiveness with respect

to dealing with RE open issues presented in the paper from

the point of view of the Requirement sengineer and

Stakeholders in the context of Information System devel-

opment process.

Second goal Analyze the proposed RETool for the pur-

pose of evaluating it with respect to its complexity of use

and applicability from the point of view of the Require-

ments engineer and Stakeholders in the context of Infor-

mation System development process.

4.2 Experiment design

Following the GQM method, we first refined the stated

goals in a set of questions and then defined metrics that

provide the grounding to answer the questions.

4.2.1 Questions

The following research questions are considered in the

experiment. Questions Q1–Q4 are related to the first research

goal while questions Q5–Q7 refine the second research goal.

Q1: How effective are the process and RETool to deal

with RE scope issues?

Q2: How effective are the process and RETool to deal

with RE communication issues?

Q3: How effective are the process and RETool to deal

with RE validation issues?

Q4: How effective are the process and RETool to deal

with RE traceability issues?

Q5: Do real users have difficulties to use the RETool?

Q6: Do real users feel that the RETool aids them to

generate a RE document?

Q7: Do real users feel that the RETool aids them to read a

RE document?

4.2.2 Planning

In order to collect data to answer the proposed questions

according to the established metrics (Sect. 4.2.3), an experi-

ment in a controlled setting [42, 61, 62] was carried out. The

experiment was organized in two different projects, each one

addressing one of the two stated research goals.

The first project, named PRJ1, encompassed the devel-

opment, using the proposed process and RETool, of a real

software system that was previously built using standard

analysis process and tools, such as use cases and class dia-

grams of the UML [43]. The existing software artifacts,

denoted as the base system, were used as baseline for com-

parison with the software artifacts generated when developing

the system with the RETool, which was denoted as the gen-

erated system. The subjects in this project acted as require-

ment/ontology engineers, system analyst and stakeholders.

The subject playing the role of engineer/analyst was exten-

sively trained in the proposed RE process and RETool. The

subject playing the role of stakeholder received a textual

document containing the detailed description of the selected

system. Then, the requirements engineer subject conducted

interviews with the stakeholders to gather the requirements of

the system. After the interviews, the subjects performed tasks

that correspond to all the further activities defined in the

proposed RE process. For this project, the subjects were

observed by the responsible researcher.

The second project, named PRJ2, was organized in two

laboratory sessions. In each session, the subjects performed

three tasks as follows: (i) requirements elicitation, (ii)

modeling of static system requirements using UML class

diagrams and use cases, (iii) modeling of static system

requirements using RETool. The subjects were separated

Requirements Eng (2011) 16:133–160 143

123

www.manaraa.com

into two groups. One group played the role of the project

stakeholder and the other played the role of the require-

ments engineer. The stakeholders group received a textual

document containing the detailed description of a system to

be modeled. Then, the requirement engineer group con-

ducted interviews with the stakeholders to gather the

requirements of the system. After the interview, the

requirement engineer group indentified the system

requirements using both UML diagrams and the RETool.

The produced requirement document was then validated by

the stakeholder group. After the first session, both groups

interchanged their roles; stakeholders group became

requirement engineer group and vice versa. To avoid a pri-

ori knowledge on the system, a different system description

was given to the stakeholders group in each session. All the

subjects received two questionnaires, one to assess their

perception of the provided training and description of

experiment tasks, as well as to collect information on their

education and experience in the experiment tasks (QT1),

and other to evaluate the RETool (QT2).

4.2.3 Metrics

Since there is no standardized set of metrics available to

evaluate the defined research questions, we specified our

own metrics tailored to the purpose of the experiment.

Following we describe each metric, denoted Mij, where

i corresponds to the question identifier, and j is a counter in

the case that more than one metric is defined per question.

M11. Difference between the number of entities at the

specification of the base system and the generated sys-

tem This metric intends to assess the process and tool

capability of correctly discovering all entities relevant to

the system specification. It is defined as:

Negen�base ¼ Negen � Nebase;

where:

Nebase Number of Entities (UML classes) at the base

system specification.

Negen Number of Entities (UML classes) at the generated

system specification.

M12. Highest number of entities per subject tag This

metrics intends to characterize the process capability of iso-

lating the entities related to each subject. This number can be

used to evaluate the complexity (based on the number of

entities) of each part of the system concerned with a certain

subject. These numbers are compared among them and the

highest one indicates the subject with the highest number of

entities (and the highest complexity). This metric is defined as:

max Nej

� �
;

where:

Nej Number of entities at the domain ontology marked

with the jth subject tag.

M13. Number of inferred relationships Represented as

Ninfe, this metrics denotes the number of relationships

among entities discovered by the activity of taxonomic

classification performed by the RETool. This metric is

useful for answer two different research questions. In this

context, it is used to show that the whenever the proposed

tool is able to reveal new relationships, it aids in the def-

inition of the system scope.

M21. Percentage of sentences removed after the vali-

dation activity This number shows the capability of

the proposed process to detect sentences that generate

inconsistencies in the knowledge base, possibly origi-

nated by communication issues. This metric is defined

as:

Naer ¼
Ars

Ns
� 100

where:

Ns Number of sentences from the client interviews.

Ars Total amount of sentences removed after the validation

activity.

M22 = M13. Number of inferred relationships For the

purpose of this research question, the finding of new rela-

tionships that were not made explicit during the elicitation

process can indicate some kind of communication problem

such as vagueness or ambiguity in the collected sentences.

M31. Number of conflicts per each interview sub-

ject This metric intends to characterize the process

ability of discovering the degree of complexity of each

subject, assuming that more complex subjects tend to raise

more inconsistencies. It is denoted as:

Sci Total amount of conflicting sentences at the ith subject.

M32. Percentage of inconsistencies between con-

cepts This metric intends to characterize the process

ability of automatically discovering inconsistencies in

the sentences gathered during the interviews. It is defined

as:

Nibc ¼
Acs

Ns

� �
� 100;

where:

Ns Total number of sentences.

Acs The total amount of conflicting sentences.

144 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

M41. Difference between the number of interviews

conducted with stakeholders and the number of SDS

tags at the domain ontology This metric intends to

characterize the process ability of keeping metadata about

the RE process after the construction of the domain

ontology. This number is greater or equal to zero, where

zero indicates that all interviews were kept and a non-zero

value indicates that some interview information are miss-

ing. This metric is defined as:

NiCli�Ont ¼ Nicli � NiOnt;

where:

NiCli The number of interviews given by the

stakeholders.

NiOnt The number of interview tags at the domain

ontology.

M42. Difference between the number of SDS tags in the

generated domain ontology and the number different

stereotypes representing SDS tags in the generated

PIM This metric intends to characterize the process

ability of keeping metadata about the RE process after the

PIM generation. This number is greater or equal to zero,

where a zero result indicates that all interviews were kept

and a non-zero value indicates that some interview infor-

mation are missing. This metric is defined as:

NiOnt�PIM ¼ NiOnt � NiPIM;

where:

NiOnt The number of interviews represented as SDS tags

at the domain ontology

NiPIM The number of interviews represented as

stereotypes, after the PIM generation.

M51. Difficulty to use the RETool This metric measures

the perception of the users regarding their difficulty in

using the proposed tool. It is denoted as:

Du %Subjects that had difficulties in using the RETool.

M61. Effectiveness of RETool in extracting require-

ments This metric assess the perception of the users

regarding the RETool capacity of significantly aids the

requirements engineer in the extraction of the requirements

in comparison with the use of traditional UML techniques

alone. It is denoted as:

Eer % Subjects that felt the RETool significantly aids

generating of the requirement document in

comparison with traditional UML techniques alone.

M62. Effectiveness of RETool in documenting require-

ments This metric assess the perception of the users

regarding the RETool capacity of significantly aids the

requirements engineer in the documentation of the

requirements in comparison with the use of traditional

UML techniques alone. It is denoted as:

Edr % Subjects that felt the RETool significantly aids

generating of the requirement document in

comparison with traditional UML techniques alone.

M71. Effectiveness of RETool in facilitating the reading

of requirement document This metric assess the per-

ception of the users regarding the easiness of reading the

requirement document generated by the RETool in com-

parison with UML use cases. It is denoted as:

Erd % Subjects that found easier to read the requirement

document generated by the RETool than the UML

use cases.

4.3 Preparation and execution of project PRJ1

The first project was conducted in a software laboratory at

Federal University of Rio Grande do Norte (UFRN),

Brazil, with two (2) subjects. The subjects were Computer

Science M.Sc. Students in their second year, with basic

knowledge in both requirements and software engineering.

The subjects were extensively trained to use the RETool in

a classroom at the University. The project was developed

during 1 week, in 3 sessions of 3:00 h each. Previously to

the sessions, the subjects attended an introductory lesson

where detailed instructions on the tasks to be performed

were presented. This lesson had the duration of 30 min and

aimed at highlighting the purpose of the experiment, while

details of the research questions were not provided. After

the introductory lesson, the subjects performed the execu-

tion of PRJ1, which consisted in the task of generating the

RE document of a real system using the RETool.

4.3.1 System description

The selected system was the Health Watcher system (HW),

a well-known testbed used in the AOSD Europe project,3

whose goal is to register public health system complaints.

Health Watcher system describes health units and their

specialties and can be used as a reference for software

systems to support the public health care system.

The system registers three kinds of complaints: animal-

complaint (report either on sick/maltreated animals or

diseases caused by animals), food-complaint (cases where

there is a suspicion infected food ingestion), and special-

complaint (other types of complaint such as restaurants

3 http://aosd.di.fct.unl.pt/.

Requirements Eng (2011) 16:133–160 145

123

http://aosd.di.fct.unl.pt/

www.manaraa.com

with hygiene problems, leaking sewerage, etc.). Each

complaint has a set of data to identify the complaint

occurrence such as the complainer name, address, the

registry of the victim (if any), etc. The system also keeps

track of each health unit and the respective diseases treated

by it.

The HW system was chosen due to the availability of

documents describing its requirements and use cases. After

a preliminary analysis, we observed that the original HW

specification was too simple to suitably depict all the

potential benefits of our proposed process, so we have

added information about the drugs prescribed by the doc-

tors, medical procedures, and health unit staff (doctors,

nurses, etc.) to the systems specification. Also, we have

extended its specification to describe requirements related

to security issues.

The complete description of the original HW system can

be found in the study by Soares et al. [63]. The system has

several specification documents and implementation ver-

sions. In each version, new requirements (mostly non-

functional) were added to the system. We used the first

version of the requirements specification and the system

implementation as the base for our experiment. The HW

UML class diagram was used for purpose of comparison

with the PIM skeleton generated by our tool. From now on,

we will refer to the HW UML specification as the ‘‘base

system’’. We employed a manual process to lexicographi-

cally compare the names of the entities of the generated

HW specification with those of the base specification.

The following subsection explains the execution of the

PRJ1 and its outcomes in the context of the experiment.

4.3.2 RE process execution in the context of PRJ1

One of the subjects was selected to be the stakeholder. This

subject played different stakeholder roles during the

development of the project: (i) the stakeholder responsible

for non-functional requirements of system access control,

named Security Specialist;(ii) the stakeholder responsible

for the whole complaining system, named Health System

Specialist; and (iii) the stakeholder responsible for the

health service, identified as Medical Specialist. The other

subject was selected to play the roles of: (i) requirements

engineer; (ii) ontology engineer; and (iii) system analyst.

The selection of both subjects was random.

During the first process activity, the requirements

engineer gathers information from stakeholders. Table 1

lists an excerpt of the interviews carried out in the exper-

iment. The full set of transcriptions can be found at

http://labdist.dimap.ufrn.br/twiki/OntologyMDAEC. In our

experiment, we consider interviews as the only source

of information. We did not use documents describing

the domain because such approach would require the

employment of some revision technique in order to meet

the CNL restrictions. These techniques are out of the scope

of this work.

After the interviews, the requirements engineer should

register the gathered relevant information about the system

by feeding the CNL editor with it. The requirements

engineer should also register the metadata (tags) related to

each information with the fragment of the interview that

raised it. Figure 5 illustrates the RETool after the execution

of activity 1(c) of the proposed process. View (a) shows the

(ACE) sentences sorted by the Subject tags in which they

have appeared. View (b) shows the sentences sorted by the

Table 1 Interview data

Stakeholder Date Subject

Medical specialist 29/09/2010 Health system organization

Health system specialist 30/09/2010 Complaint system

Security specialist 28/09/2010 User access control

Fig. 5 The REView plug-in fed

with the interview information

146 Requirements Eng (2011) 16:133–160

123

http://labdist.dimap.ufrn.br/twiki/OntologyMDAEC

www.manaraa.com

date when they occurred. View (c) shows the other tags

used to mark the selected sentences. Finally, view

(d) shows all the sentences that contain each concept.

Figure 5 shows that the sentence ‘‘Every employee has a

password.’’ is marked with three ordinary tags: ‘‘Security’’,

‘‘Access’’, and ‘‘Control’’. Moreover, such sentence is also

marked with the subject tag ‘‘User_Access_Control’’, the

date tag ‘‘28/09/2010’’ and the stakeholder tag ‘‘Secu-

rity_Specialist’’. So, from the subject, date and stakeholder

tags, one can conclude that the sentence was given by the

security specialist, at September 28, 2010 and it is related

to the subject ‘‘user access control’’.

According to our proposed RE process, after feeding the

tool with the collected requirements information, the next

step is to build the domain ontology. Since the RETool is

integrated in the Protégé tool, the ontology, which repre-

sents part of the development team view, is built on-the-fly

while the interview sentences are fed into the tool. Figure 6

shows a fragment of the generated ontology using a graph

notation. The graph should be read from right to left and

the edges represent is-a relationship between the concepts,

expressed as nodes. For example, the ontology fragment of

Fig. 6 defines the concepts animal_complaint, food_com-

plaint, and special_complaint as sub-concept of complaint

concept, which is a sub-concept of the special concept

owl:Thing.

The next phase of the proposed process is the require-

ments validation where the ontology is checked for con-

sistency by a reasoner. In our tool, this is done by the Pellet

reasoner bundled with the Protégé tool. Besides the

checking of domain ontology consistency, new relation-

ships may be discovered through the automatic taxonomic

classification process, also provided by the reasoner. The

following subsection summarizes the inconsistencies dis-

covered during the validation phase carried on during the

experiment.

4.3.2.1 Inconsistencies and taxonomic classification In

the performed experiment, 24 TBox and 12 ABox incon-

sistencies were found. Table 2 illustrates five of these

TBox Inconsistencies. In such table, the stakeholder that

provided the sentence appears between brackets. These

inconsistencies will be explained throughout this section

along with the adopted strategy to solve them. Such

inconsistencies along with the stakeholders and interview

dates related to them are presented in the ValidationView

of the REView plug-in.

Our process also identified 12 ABox knowledge incon-

sistencies, i.e., inconsistencies between the individuals at

the ontology and the definitions of the concepts. They were

all solved using the same strategy used to address TBox

inconsistencies, i.e., conducting new interviews followed

by removing and/or changing sentences that originate the

inconsistency. Table 3 lists an excerpt of the discovered

ABox sentences along with the TBox sentence with which

each of them is in contradiction (the stakeholders that

provided the statements appear between brackets).

Besides using the ACEIndexView and the Validation-

View provided by REView, the inferred hierarchy view

provided by Protégé can also be used by the requirements

engineer to analyze the detected inconsistencies and track

their source. For example, Fig. 7 shows the Protege infer-

red hierarchy view with conflicting classes animal_com-

plaint, food_complaint and victim. Assuming that the RE

engineer wants to investigate the victim class, he should

select such concept and access the ACEIndexView to get

the information about each sentence where the concept

victim has been quoted, as shown in Fig. 8.

After solving the inconsistencies, the taxonomic classi-

fication activity takes place and a new ontology is built.

This activity is carried out by the ontology engineer aided

by Protégé Inferred Axioms view. In our experiment, the

taxonomic classification was able to discover thirty-three

new relationships. Each line of the Protégé Inferred Axi-

oms view shows a subClassOf axiom, used to express the

subclass relationship between two concepts. Figure 9

shows the Protégé axiom view with some of the inferred

relationships. In Fig. 9, the axioms marked as (c), stating

that the concepts nurse, doctor, observer and patient are

sub-concepts of the person concept, were inferred by the

reasoner after processing the sentence ‘‘Everything that has

a name is a person’’ and those declaring that the citizen,

nurse, doctor, observer and patient concepts have names.

The following phase of the process execution is the

generation of the PIM skeleton. The first activity of such

phase is the filtering of relevant entities. In the experiment

we performed a very simple filtering that consisted in

removing the properties which we considered as primitive

types, like: name, phone_number, address, etc. However,

this activity can be much more complex depending on the

RE knowledge base, for instance involving a full ontology

cleaning [64]. After the filtering activity, a MDA trans-

formation is run to generate the PIM skeleton. This is done

outside Protégé by an Ant script specifying the defined

transformation flow.

Fig. 6 Fragment of the generated domain ontology

Requirements Eng (2011) 16:133–160 147

123

www.manaraa.com

Figure 10 shows the fragment of the PIM (UML class

diagram) for the entities related to the complaint concept.

The complete class diagrams can be found at http://

labdist.dimap.ufrn.br/twiki/MDARE. This figure shows the

concepts presented in Fig. 6 after the transformation

workflow. It shows the classes complaint, special_complaint,

food_complaint and animal_complaint. Figure 10 also shows

that our transformation was able to keep the is-a relationships

between the concepts. For example: the special_complaint

class, which is a subclass of the complaint class, corresponds

to the Special Complaint concept that is a subconcept of the

Complaint concept. Moreover, the metadata about the inter-

view process are propagated from the ontology domain model

to the PIM where they are represented as UML stereotypes. It

is worth noting that although the use of stereotypes for inter-

view visualization may seem to negatively affect the PIM

readability, most of current UML graphic tools provide

functionalities that selectively inhibit stereotypes presenta-

tion, thus avoiding this potential drawback.

4.4 Preparation and execution of project PRJ2

The PRJ2 experiment was specifically devised and pre-

pared to evaluate the second research goal. PRJ2 was

conducted in a software laboratory at University of Sydney

(USYD), Australia, with nine (9) subjects. The subjects

were volunteers’ Computer Science PhD Students, with

different levels of knowledge in both requirement and

software engineering. The PRJ2 experiment started with an

introductory lesson. In the lesson, detailed instructions on

the tasks to be performed were presented to the subjects.

The lesson aimed at highlighting the goal of the experi-

ment, while the details on the experimental research

questions were not provided. After that, the subjects were

trained to use the RETool. The training was divided into

two steps: in the first step, concepts related to the ACE

language were presented. Next, the subjects were intro-

duced to the RETool and they were given hands-on tutorial

with examples to familiarize themselves with the main

Table 2 Discovered inconsistencies and proposed solutions

Conflicting sentences Solution

TBox Inconsistencies Originated from the Sentence ‘‘Every victim is a system_user’’ (Health System Specialist)

‘‘No victim has a password.’’, ‘‘No victim has a login’’ and ‘‘If
something X is a system_user then X has a login and a password’’

(Security Specialist)

The requirements engineer conducted a new interview with both

conflicting stakeholders and decided to remove the conflicting

sentence ‘‘Every victim is a system_user’’

TBox Inconsistencies Originated from the Sentence ‘‘Everything that has a problem_location_data is an animal_complaint’’ (Health System
Specialist)

‘‘Every special_complaint has a problem_location_data.’’ and ‘‘No
animal complaint is a special_complaint’’ (Health System Specialist)

The RE engineer conducted a new interview with the Health System

Specialist and he decided to remove the sentence ‘‘Everything that has
a problem_location_data is an animal_complaint’’. So, now

special_complaints also have problem_location_data

TBox Inconsistencies Originated from the Sentence ‘‘Everything that executes medical_procedures is a doctor’’ and ‘‘Every nurse executes at
least 1 medical_procedure’’ (Medical Specialist)

‘‘No doctor is a nurse’’ (Medical Specialist) To solve such conflict, the RE engineer interviewed again the Medical

Specialist and he recognized that both doctors and nurses execute

medical_procedure, so the RE engineer removed the sentence

‘‘Everything that executes medical_procedures is a doctor’’

TBox Inconsistencies Originated from the Sentence ‘‘Everything that has a symptom is a disease’’ (Medical Specialist)

‘‘Every food_complaint has at least 1 symptom’’ and ‘‘No Complaint

is a disease’’ (Health System Specialist)

In order to solve such conflict, the RE engineer conducted new

interviews with both conflicting stakeholders and they come to the

conclusion that a food_complaint should also have symptoms, this was

done by relaxing the restriction that states that ‘‘Everything that has a
symptom is a disease.’’, so the interviewer changed such sentence to

‘‘Every disease has at least 1 symptom’’

TBox Inconsistencies Originated from the Sentence ‘‘Every suspicious_food_establishment is a problem_location_data’’ (Health System
Specialist)

‘‘Everything that has a problem_location_data is an
animal_complaint’’ and ‘‘Every suspicious_meal has a
suspicious_food_stablishment’’ (Health System Specialist)

These sentences conflict due to the fact that complaint and

suspicious_meals are disjoint and that every suspicious meal has a

suspicious food establishment. In order to solve this conflict, the RE

engineer conducted a new interview with the Health System Specialist

and he discover that suspicious_meals are actually a type of complain.

So the sentence ‘‘Every suspicious_meal is a food_complaint’’ is

added to the knowledge base

148 Requirements Eng (2011) 16:133–160

123

http://labdist.dimap.ufrn.br/twiki/MDARE
http://labdist.dimap.ufrn.br/twiki/MDARE

www.manaraa.com

functionalities of RETool. The preparation phase consumed

2:00 h.

After the preparation phase, the experiment was carried

out in two sessions. Each session took 2:00 h. The subjects

were randomly divided into 3 groups of two individuals

and 1 group of 3 individuals. In each group, the subjects

interchanged their roles according to the experiment

planning (Sect. 4.2.2).

Similarly to the works presented by Briand et al. and

Gravino et al. [61, 62] at the end of the second laboratory

session, two survey questionnaires were distributed to the

subjects. The first questionnaires (QT1) aimed at assessing

the overall quality of the provided material, the compre-

hension of the tasks, and the level of the subject knowledge

in UML, ontologies, and CNL. The second questionnaire

(QT2) aimed at assessing the subjects’ perceived usability

and the usefulness of the RETool compared to UML class

diagram and use cases.

The survey questionnaire QT1 was composed of four-

teen questions (Table 4). The answers to the questions

Q1–Q9 were based on a five-point Likert scale [65]: from

strongly agree (1) to strongly disagree (5). The questions

from Q10–Q14 expected answers according to a different

five-point Likert scale ranging from very high (1) to very

low (5).

The survey questionnaire QT2 was composed of five

questions (Table 5). The answers to the questions in QT2

were based on a five-point Likert scale ranging from:

strongly agree (1) to strongly disagree (5). A neutral

judgment could be also be expressed by the subjects.

5 Experiment results and interpretation

This section describes the experiment results and their

interpretation.

Table 3 Contradicting ABox and TBox sentences

ABox sentence TBox sentences

‘‘A victim has a password’’ (Health System Specialist) ‘‘No victim has a password’’ (Security Specialist)

‘‘A food_complaint has no victim’’ (Medical Specialist) ‘‘Every food_complaint has at least 1 victim’’ (Health System

Specialist)

‘‘A nurse has no password’’ (Health System Specialist) ‘‘Every nurse has a password’’ (Security Specialist)

‘‘A flu is a disease that has no symptoms’’ (Health System Specialist) ‘‘Every disease has at least 1 symptom’’ (Medical Specialist)

‘‘A visitor_doctor is a doctor that has no login’’ (Medical Specialist) ‘‘Every doctor has a login’’ (Security Specialist)

‘‘A general_practitioner is a doctor that has no specialty’’ (Medical
Specialist)

‘‘Every doctor has at least 1 specialty’’ (Health System Specialist)

‘‘An auxiliar_nurse is a nurse that executes no medical_procedure’’

(Medical Specialist)
‘‘Every medical_procedure is executed by a nurse.’’ and ‘‘Every nurse

executes at least 1 medical_procedure’’ (Medical Specialist)

‘‘A natural_medicine is a drug that has no side_effects’’ (Medical
Specialist)

‘‘Every drug has at least 1 side_effect’’ (Medical Specialist)

‘‘An observer registers a complaint’’ (Health System Specialist) ‘‘If something X registers a complaint then X is a citizen.’’ and ‘‘No
observer is a citizen’’ (Health System Specialist)

‘‘An animal_poisoning_complaint is an animal_complaint’’ and ‘‘An
animal_poisoning_complaint is a food_complaint’’ (Health System
Specialist)

‘‘No food_complaint is an animal_complaint’’ (Health System

Specialist)

Fig. 7 Conflicting concepts shown at the Protégé inferred hierarchy

view

Fig. 8 Sentences at which the conflicting concepts were used shown

at the ACEIndex view

Requirements Eng (2011) 16:133–160 149

123

www.manaraa.com

5.1 Results of PRJ1

Tables 6, 7, 8, and 9 show the results of the data collected

during the execution of PRJ1of the conducted experiment,

for each one of the defined research questions.

Regarding the question addressing the scope issues, for

the first metric, Negen–base, we found a value of 25 for the

number of entities (meaning UML classes) generated by

the proposed process against 15 entities specified in the

base system. The 25 entities generated by our process

include all the entities in the base system specification and

additional ones. Therefore, the process succeeded in iden-

tifying the same scope of the base system. The difference

between the numbers of entities in the two specifications

comes from the fact that the base specification does not

modularize some concepts. For instance, contact_data is

represented as primitive attributes repeated in several

classes as all kinds of complaints (special, animal and

food). The same applies to the concepts: victim_data,

complaint_data and contact_address. Also, some of the

concepts captured at the process were not represented as

classes at the base system. We can cite the concepts sus-

picious_food_stablishment, suspicious_meal and symptom.

The result of this metric shows that the proposed process is

able of correctly uncovering all relevant entities in the

system being modeled.

To obtain the second metric, max(Nej), we first com-

puted the number of entities in the domain ontology

marked with each one of the j subject tags, and then

computed the highest value among them. The following

subjects were considered: (i) Health_System = 1; (ii)

Complaint_System = 2; (iii) User_access_control = 3.

The following values were achieved for each subject:

Ne1 ¼ 22; Ne2 ¼ 33; Ne3 ¼ 9

The Complaint_System had the highest number of entities

(33). Therefore, the complaint system is probably the

Fig. 9 Protégé inferred axioms

view

Fig. 10 Fragment of the generated PIM

150 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

largest subsystem in the modeled domain. Moreover, such

values can provide hints on how well a requirement was

elicited. Subjects with a Nej value far below the average

may indicate that the requirement related to such subject is

not well elicited, requiring further interviews. On the other

hand, such requirement may be irrelevant to the system

thus, it should be considered out of the system scope.

Finally, the Ninf e value shows that 33 relationships were

not made explicit during the requirements specification

activity in the base system. Since the mechanisms provided

by the RETool were able to reveal these new relationships,

the proposed process aided in the definition of the correct

scope of the domain.

Regarding the question addressing the communication

issues, for the first metric we achieved the following val-

ues: Ns = 148; Ars = 19.

The resultant value of Naer = 12.83 indicates that about

13% of the sentences generated some kind of

Table 4 Experiment survey questionnaire QT1

ID Question

Q1 I judge that the received training was sufficient to perform the tasks I was assigned to

Q2 I judge that the provided training material was sufficient to perform the tasks I was assigned to

Q3 I had enough time to perform the task of specifying the CoffeeMaker system with the RETool

Q4 I had enough time to perform the task of specifying the CoffeeMaker system with UML

Q5 I had enough time to perform the task of specifying the Cafeteria system with the RETool

Q6 I had enough time to perform the task of specifying the Cafeteria system with UML

Q7 The task objectives were perfectly clear to me

Q8 The description of the CoffeeMaker system was perfectly clear to me

Q9 The description of the Cafeteria system was perfectly clear to me

Q10 I judge the level of difficulty of the task on specifying the CoffeeMaker system as:

Q11 I judge the level of difficulty of the task on specifying the Cafeteria system as:

Q12 Assessing your experience level on the analysis phase of object-oriented system modeling (UML use cases and class diagrams)

Q13 Assessing your experience level on the Natural Controlled Languages

Q14 Assessing your experience level on the Ontologies

Table 5 Experiment survey questionnaire QT2

Q15 I judge the task of generating the RE document with the RETool more complex than the task of generating the RE document with UML

Q16 I judge the task of reading the RE document easier with the support of the RETool than with UML use cases and class diagrams

Q17 I judge the task of generating the RE document with the RETool should became easier with practice

Q18 I judge that the RETool significantly aided the extraction of the requirements during the task of interviewing the stakeholders

Q19 I judge that the RETool significantly aided the documentation of the requirements during the task of interviewing the stakeholders

Table 6 Results for the scope issues

Metric Result

Negen–base 10

max(Nej) 33

Ninfe 33

Table 7 Results for the communication issues

Metric Result

Naer 12.83

Ninfe 33

Table 8 Results for the validation issues

Metric Result

Sci Sc1 = 11 (5 TBox, 6 ABox)

Sc2 = 21 (15 TBox, 6 ABox)

Sc3 = 4 (4 ABox)

Nibc 24

Table 9 Results for the traceability issues

Metric Result

Nicli–Ont 0

NiOnt–PIM 0

Requirements Eng (2011) 16:133–160 151

123

www.manaraa.com

inconsistence. These sentences were detected by the vali-

dation carried out by the RETool. Since these inconsis-

tencies were generated by communication problems, the

proposed process succeeded in minimizing such issues.

The value of the second metric, Ninf e, indicates that 33

relationships were not made explicit during the elicitation

process, possibly due to some kind of communication

problem such as vagueness or ambiguity in the collected

sentences. However, since such sentences arose when the

inference mechanisms of the RETool were employed, the

generated system does not suffer from this issue.

Regarding the question addressing the validation issues,

for the first metric the same three subjects described above

(Health_System, Complaint_System, User_access_control)

were considered. The resultant numbers show that the

process is able to classify the subjects according to their

complexity, assuming that there is a direct relation between

inconsistency and complexity. In our experiment, the

Health_System subject had the highest number of incon-

sistencies (21) and the Security subject the lowest (4).

For computing the second metric, from a total of 148

sentences we achieved 36 conflicting sentences (24 TBox

and 12 ABox). This number shows that our process was

able to automatically detect 24% of inconsistent sentences.

Without such support, some of these inconsistent sentences

could be propagated to the further phases of the software

development thus, increasing the cost to solve them.

The results of the two metrics defined to assess the

traceability issues show that no information about the

interview process was missed during the first transforma-

tion process, when the domain ontology is generated and

also that our process were able to keep track of all inter-

view metadata information throughout the whole MDA

generation process.

Summarizing the relevant points of the results con-

cerning our first stated goal, we can observe that regarding

scope issues, besides showing that the proposed RE process

succeeded in capturing all the entities present in the

specification of the base system, the performed evaluation

demonstrates that the process was able to provide hints on

the complexity of a given requirement and on how well it

was elicited. The performed evaluation also demonstrates

that the proposed process minimizes both communication

and validation issues through its mechanisms of conflict

detection and taxonomical classification. Finally, trace-

ability issues were successfully addressed by the MDA

process that synchronizes the different models and cor-

rectly propagates the metadata on interviews among them.

5.2 Results of PRJ2

The metrics regarding the second stated goal are extracted

from the survey questionnaires QT1 and QT2 obtained

after the conduct PRJ2 experiment. Since these question-

naires were based on Likert-type scales, it is necessary to

calculate the internal consistency reliability of the adopted

scales [66]. Cronbach’s alpha [67] is an index of reliability

widely used to analyze Likert-type questionnaires [66].

Such index is capable of determining if a given question-

naire will always elicit consistent and reliable responses

even if the questions were replaced with other similar

questions. Cronbach’s alpha index is associated with the

variation accounted for by the true score of the underlying

construct. Construct is the hypothetical variable that is

being measured [68]. Alpha index (a) ranges in value from

0 to 1; the higher the score, the more reliable the generated

scale is. Nunnaly [69] has indicated 0.7 to be an acceptable

reliability coefficient, but lower thresholds are sometimes

used in the literature.

The answers to the questionnaires QT1 and QT2 are

shown in Tables 10 and 12, respectively. The descriptive

statistics of the questionnaires responses are shown in

Tables 11 and 13, respectively. In order to assess the

questionnaire reliability using the Cronbach’s alpha index

(a), we grouped the questions according to the following

constructs: (i) training (Q1 and Q2); (ii) time RETool (Q3

and Q5); (iii) time UML (Q4 and Q6); (iv) task description

(Q8 and Q9); (v) task complexity (Q10 and Q11);

RETool benefits (Q16–Q19). The value of a for each

construct was calculated using the IBM SPSS statistical

software [70].

Based on the answers to questions Q1 and Q2, the

training for the subjects was not enough to carry out the

tasks, although the training material was considered rela-

tively proper for the experiment. In particular, it was

revealed that the subjects were unfamiliar with ACE lan-

guage and the RETool. The value of a obtained for the

training construct was 0.695, which denotes an acceptable

reliability.

From the questions Q3–Q6, it can be readily inferred

that the time to perform the experiment was considered

proper and sufficient. More than 55% of the subjects agreed

that the time to carry on the tasks using both RETool and

UML were sufficient and the values of a obtained were

respectively 0.706 for the time RETool construct and 0.914

for the time UML construct.

According to the answers to Q7, more than 66% of the

subjects agreed that the task objectives were clear. Since

there is a single question to analyze this item, it is not

possible to assess the reliability of the answers related to

clearness of the task objectives by using a.

The answers to the questions Q8 and Q9 show that the

descriptions of the systems in both sessions were clear

enough to perform the task. The value of a obtained for the

task description construct was 0.869, which denotes a good

reliability.

152 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

It can be shown that the subjects think that specifying

both systems is considered challenging based on the

answers to the questions Q10 and Q11. The value of a
obtained for the task complexity construct was 0.907,

which denotes an excellent reliability. This result can be

partially due to their limited knowledge of the requirement

engineering process, especially the use of and the unfa-

miliarity to tools such as the ACE language and ontologies

as the feedback from the questions Q12–Q14 shows.

The answers to the questionnaires QT2 were used to

generate the metrics to the questions related to the second

stated goal. Table 14 presents the results of such metrics.

The first metric, Du, shows that almost 78% of the subjects

considered that RETool is more complex to use than UML

alone when generating requirement documents (this result

was derived from question Q15). This metrics indicates

that despite the benefits of the RETool, its use is not trivial

and proper training is required to take advantage of it.

Since there is a single question to analyze this metrics, it is

not possible to assess the reliability of the answers related

to the RETool complexity by using a.

The value of metric Erd (derived from question Q16)

shows that more than 44% of the subjects thought that

reading the requirement documents with the support of

RETool is easier than UML diagrams. However, this result

is not conclusive because the same percentage (44%) of

subjects responded QT16 with a neutral judgment.

Despite the difficulties and unfamiliarity of using

RETool, the result of the metric Eer (derived from question

Q19) indicates that the majority of the subjects (66.67%)

considered that RETool significantly aided the extraction

of the requirements during the interviews with the stake-

holders. Moreover, the result of the metric Edr (derived

from question Q19) shows that the majority of the subjects

(66.67%) found that RETool significantly aided the

requirement documentation. The answers to the questions

Q18 and Q19 along with Q1 suggest that the benefit of

using RETool can be increased with proper and sufficient

trainings. Also, the subjects reported (Q17) that if they

have had enough training they would have been able

to generate the requirements documents more easily.

Table 10 Experiment survey questionnaire QT1 answers (%)

Strongly

agree

Agree Neutral Disagree Strongly

disagree

Q1 0.00 22.22 11.11 55.56 11.11

Q2 0.00 44.44 33.33 11.11 11.11

Q3 0.00 66.67 22.22 11.11 0.00

Q4 11.11 44.44 33.33 11.11 0.00

Q5 0.00 55.56 11.11 33.33 0.00

Q6 11.11 55.56 33.33 0.00 0.00

Q7 11.11 55.56 11.11 22.22 0.00

Q8 22.22 44.44 33.33 0.00 0.00

Q9 22.22 44.44 22.22 11.11 0.00

High Medium/high Medium Medium/low Low

Q10 11.11 22.22 44.44 11.11 11.11

Q11 11.11 33.33 33.33 11.11 11.11

Q12 22.22 11.11 33.33 22.22 11.11

Q13 0.00 11.11 22.22 33.33 33.33

Q14 0.00 22.22 0.00 22.22 55.56

Table 11 Descriptive statistics of survey questionnaire QT1

N Minimum Maximum Sum Mean SD

Q1 9 1 4 22 2.44 1.014

Q2 9 1 4 28 3.11 1.054

Q3 9 2 4 32 3.56 0.726

Q4 9 2 5 32 3.56 0.882

Q5 9 2 4 30 3.33 1.000

Q6 9 3 5 34 3.78 0.667

Q7 9 2 5 32 3.56 1.014

Q8 9 3 5 35 3.89 0.782

Q9 9 2 5 34 3.78 0.972

Q10 9 1 5 28 3.11 1.167

Q11 9 1 5 30 3.33 1.118

Q12 9 1 5 28 3.11 1.364

Q13 9 1 4 19 2.11 1.054

Q14 9 1 4 17 1.89 1.269

Valid N (listwise) 9

Table 12 Experiment survey questionnaire QT2 answers (%)

Strongly agree Agree Neutral Disagree Strongly disagree

Q15 22.22 55.56 22.22 0.00 0.00

Q16 0.00 44.44 44.44 11.11 0.00

Q17 33.33 33.33 33.33 0.00 0.00

Q18 0.00 66.67 22.22 11.11 0.00

Q19 0.00 66.67 33.33 0.00 0.00

Table 13 Descriptive statistics of survey questionnaire QT2

N Minimum Maximum Mean SD

Q15 9 3 5 36 4.00 0.707

Q16 9 2 4 30 3.33 0.707

Q17 9 3 5 36 4.00 0.866

Q18 9 2 4 32 3.56 0.726

Q19 9 3 4 33 3.67 0.500

Valid N (listwise) 9

Requirements Eng (2011) 16:133–160 153

123

www.manaraa.com

Q16–Q19 were grouped in the RETool benefits construct,

whose obtained a value was 0.701.

The accomplished analysis indicates the potential

applicability of using RETool in the RE process provided

that sufficient training is given to the users.

Besides the questionnaires, the observation of PRJ2

raised some interesting facts. First, regarding the com-

plexity of use of the RETool, PRJ2 showed that even with

few hours of training it is possible to start using the RETool

to extract and document requirements even with users with

no previous knowledge on ACE and OWL. This is mainly

due to one of the features of RETool borrowed from

ACEView. Since ACEView offers an English-based (ACE)

syntax for OWL, it greatly simplifies the creation and

manipulation of OWL knowledge bases [46]. Moreover,

the RETool completely hides the MDA transformations

from the user. Another important observation is regarding

RETool ways of use and its current limitations. The sub-

jects found easier the specify OWL object properties as

well as data properties directly from the Protégé standard

views than with ACE sentences. The problem with this

approach is that data properties specified directly in Prot-

égé standard views do not appear as ACE sentences. One

important limitation detected during the experiment was

also related to OWL object properties and data properties.

The current implemented mapping from ACE sentences to

both object and data properties is incomplete. Besides the

ACE sentences, the user also needs to specify the correct

OWL Domain and Range of each property in the Protégé

standard views. All the identified limitations in RETool are

currently being addressed.

5.3 Threats to validity

In this section we describe the different threats that could

affect the validity of the experiment presented in this paper,

following the framework proposed in [42]. The discussed

threats affect the construct, internal, external, and conclu-

sion validity of the results. Overall, we tried to address the

possible threats to validity through the careful planning of

the experiment (Sect. 4.2.2).

Construct validity is concerned with the relationship

between theory and observation [42]. Construct validity

threats that may be present in this experiment were

addressed by using a fairly simple and standard design.

Another threat that could be raised is due to evaluation

apprehension. To mitigate this threat, the subjects were not

evaluated on their performance during the experiment.

Moreover, subjects were not aware of the experiment

goals.

The internal validity threat is concerned with factors

that may affect the dependent variables (the metrics in our

experiment) without the researcher’s knowledge [42]. In

particular, the presented experiment aimed at assessing

whether stakeholders perceive benefits in using the

RETool. Regarding internal validity, we identify the fol-

lowing threats:

(i) Differences between subjects: the different level of

experience with UML, ontologies and CNL could lead

to biased results. We tried to minimize this threat by

including a training session on such languages.

However, the analysis of the questionnaires’ responses

indicates that the results of PRJ2 were biased through

some variables. The questionnaire QT1 revealed that

the training given during the PRJ2 was clearly not

sufficient. Moreover, QT1 also revealed that the

subjects are not homogeneous regarding their experi-

ence with UML, Ontologies and CNL. Therefore, it is

very alike that the results would be different if a

proper training and a more homogeneous group of

subjects were used. Since the questionnaires (ques-

tions Q12–Q14) indicate that the subjects are more

familiar with object-oriented modeling than with

ontology and CNL, the bias of the results was toward

UML. In particular, considering that only one subject

had previous contact with the RETool and that the

training was not sufficient, we can conclude that the

results indicating that the RETool is more complex to

use than UML (Q15) are strongly biased toward UML.

(ii) Differences between requirements models and tasks:

The requirements models used in each task were

different. Moreover, the tasks presented to the

subjects were different. Therefore their understand-

ability could be different. We mitigated these threats

by the design of the experiment, in which each group

worked over two laboratory sessions, alternating the

different tasks (using RETool or using UML). The

survey questionnaire also showed that the subjects

found clear everything regarding the controlled

experiment.

(iii) Fatigue effects: The experiments were organized in

daily sessions of 3:00 h (PRJ1) and 2:00 h (PRJ2).

During the experiments, the subjects were observed

by a responsible researcher and no signs of fatigue

were detected.

Table 14 Results for the metrics addressing the usability and appli-

cability of the RETool

Metric Result

Du 77.78

Eer 66.67

Edr 66.67

Erd 44.44

154 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

(iv) Subject motivation: All the subjects were volunteers

and they were aware that their contribution was very

important to the research group they belong to.

Moreover, most of the subjects reported at the end of

the experiments that they were happy to participate

in the experiment since they had the opportunity to

learn new techniques that they perceived as useful

for their carriers.

External validity is the degree to which the experiment

results can be generalized within different contexts. As

stated by Gravino et al. [62], threats are always present

when experiments are performed with students. However,

many researchers believe that experiments with students

are useful as a pilot for latter industrial experiments. It is

important to highlight that our experiment aims at evalu-

ating a new RE approach and a tool that is in its very early

stage of development. Considering this context, it was not

viable to try an industrial experiment. Another aspect to

consider is that the system descriptions used in the exper-

iments have small size. Larger requirements models pres-

ent a complexity that needs to be handled. Therefore, it is

necessary to perform experiment replications with system

descriptions of different sizes to confirm or contradict the

results. However, since the RETool provides validation and

traceability of requirements, we argue that with more

complex systems, its use can be even more effective.

Conclusion validity threats concern the issues that affect

the ability of the experiment to generate correct conclusion.

The conclusion validity threats were mitigated by the

experiment design and the use of statistics to evaluate the

reliability of the survey questionnaires. Additionally,

the survey questionnaires were designed using standard

procedures and scales [65]. However, as the conclusion

validity can be affected by the observation number, further

replications on a larger dataset are required to confirm or

contradict the achieved results.

Despite the highlighted issues with the experiment, the

metrics results of PRJ1 provide initial evidences that the

proposed process and RETool provide useful mechanisms

to deal with the RE open issues. The metrics results of

PRJ2, albeit not conclusive, corroborate to the results of

PRJ1, indicating that the use of the RETool aids in the

extraction and documentation of requirements.

6 Related work

As we previously mentioned, the main purpose of this work

is to address four major open issues in requirements

engineering, namely, scope, communication, volatility and

traceability issues, by proposing a multi-viewed approach

based on the integration of three different technologies:

ontologies, CNL and MDA. The use of ontologies partially

addresses communication and volatility issues; the use of

CNL addresses scope and communication issues while

MDA addresses communication and traceability issues. We

organized this section in two groups. The first group

encompasses works that employs Ontologies to augment

the RE in different ways, thus addressing communication

and volatility issues. The second group presents the works

that propose the use of controlled natural languages and/or

model-driven development to augment the RE process,

thus jointly addressing scope, communication and trace-

ability issues. After describing each group of works, we

present a discussion about the main differences between

them and our proposal. To the best of our knowledge, our

work is the first to propose an approach that exploits the

integration of these three technologies, thus tackling the

four open issues altogether.

6.1 Ontologies in requirements engineering

Research initiatives exploring the synergy between ontol-

ogies and requirements engineering can be classified

according to the way ontologies are used to support the

requirements engineering process. Based on this idea,

the authors in [71] organize the use of ontology in the

requirements engineering phase in: (i) ontology as a

product of RE; (ii) RE processes guided by ontologies;

(iii) ontologies supporting collaboration in geographically

distributed RE processes; and (iv) ontologies supporting

requirements validation. Following we describe the related

works according to this organization. However, we do not

consider the works on ontologies supporting RE distributed

collaboration since supporting distributed process devel-

opment is out of the scope of the proposal presented in this

paper.

6.1.1 Ontology as a product of RE

Breitman et al. [45] propose a requirement engineering

process that encompasses a specific sub-process for

building ontology. This sub-process is based on the layered

ontology engineering approach [72], where a Language

Extended Lexicon (LEL) [73] is used to organize the

ontology building. The lexicon is built by extracting the

relevant terms from the interviews or source documents,

and mapping such terms to the appropriate constructs of the

ontology that describes the domain representing the

application being elicited. In this work, ontologies play

the role of facilitating the knowledge sharing regarding the

domain being elicited. Vongdoiwang [74] proposes a

methodology for supporting RE in which ontologies are

used as a tool to convert a problem domain textual

description into an object model. Such methodology is

Requirements Eng (2011) 16:133–160 155

123

www.manaraa.com

based on the transformation of eight different models. The

first model is a Text description model (T-model) and the

last model (the output of the methodology) is a Class

(object) model (C-model). The T-model is processed by the

Corporum OntoExtract [74] ontological engine tool, which

builds an ontology in RDF schema (O-Model) that reflects

concepts contained in the T-Model. Such concepts are

refined by the remaining models in order to build the

C-model. The other proposed models represent specific

analysis activities, which the developers should accomplish

in order to get benefit from using Ontologies for semifor-

mal identification of objects, where such objects are

responsible for the system functionality. Works such pre-

sented in [51] and [75] show that the Semantic Web, in

special ontologies, can serve as a platform on which

domain models can be created, shared, and reused. The

authors argue that the end-to-end use of ontologies in the

analysis and design phases as well as in the implementation

is highly suitable for rapid application development. The

authors propose the use of a web-based knowledge repre-

sentation format that enables developers to discover shar-

able domain models and knowledge bases from internal

and external repositories.

6.1.2 RE processes guided by ontologies

Commonly, the RE phase implies the use of different

methodologies such as object-oriented analyses, goal-driven,

viewpoints-oriented, and scenario-based approaches, or

their combinations [76]. Since such methodologies were

not designed taking into account the integration among

them, they are hard to use in a collaborative way. This is a

well-known problem in RE and different solutions have

been proposed since the eighties [77]. More recently, Lee

and Gandhi [76] proposed an ontology-based framework,

named Onto-ActRE, which promotes cohesiveness

between the artifacts generated from different modeling

techniques and creates a shared understanding from mul-

tiple dimensions. Such framework combines several RE

modeling techniques with complementary semantics in a

unifying ontological engineering process, allowing build-

ing a multidimensional view of the gathered RE knowl-

edge. The central point of this solution is a Problem

Domain Ontology (PDO) that integrates (i) goal-driven

scenario composition, (ii) requirements domain model, (iii)

viewpoints hierarchy, and (iv) other domain specific

taxonomies. The authors developed the GENeric Object

Model (GenOM) tool, which is based on Jena and OWL

(for representing PDO), and that allows requirements

engineers to use the requirements domain model along with

the goals from the goal hierarchy and the associated

stakeholders in a viewpoints hierarchy. The authors [78]

propose an ontology to support the requirement

management process specifically tailored to the engineer-

ing design. The proposed ontology provides a terminology

for design that can be shared by all the engineers involved.

Furthermore, the authors define the meaning of the termi-

nology by using first-order logic which gives a precise and

unambiguous semantics for each term. This approach

avoids ambiguity, possible conflicts and different inter-

pretations by different engineers besides promoting the

collaboration among developers. Moreover, the authors

developed a set of axioms that capture definitions and

constraints on the terminology to enable automatic infer-

ences from the design knowledge. Such axioms allow

deducing new information from the existent knowledge

base and enable integrity checking of the design knowl-

edge, i.e., detecting invalid data in the database and

avoiding updates introducing conflicts among the data and

the object model of design.

6.1.3 Ontologies supporting requirements verification

Requirements verification is a concern that has been

investigated for a while. Among such researches, there are

works that, similarly to ours, take advantage of the power

of the first-order logic beneath ontologies to help uncov-

ering inconsistencies. The work Kaiya et al. by [34] pro-

poses a method for requirements elicitation, called ORE

(Ontology based Requirements Elicitation), which uses a

domain ontology to represent the requirements knowledge.

In such work, after the domain ontology was manually built

by the requirements engineer, the requirements elicitation

proceeds with two iterative activities for requirements

verification: evaluation of requirements by applying quality

metrics, and revision of the gathered requirements based on

the structural characteristics of the generated ontology. By

using inference rules along with quality metrics on the

domain ontology, the proposed methodology aids the

requirements engineer to discover which requirements

should be added for improving completeness of the RE

knowledge base and/or which requirements should be

deleted from the RE knowledge base for keeping consis-

tency among the elicited requirements. The work by Zong-

yong et al. [79] suggests a formal approach to precisely

describe ontology by initially using description logic, and

then modeling integrity rules and derivation rules which

restrict the business behavior. All the rules are represented

from three perspectives: syntax, semantics and visualiza-

tion. Finally, the work provides a framework for require-

ments model checking that combines domain ontology and

domain rules, thus making the requirements elicitation

process both guided by the domain ontology and restricted

by the domain rules. Therefore, the acquired requirements

would comply with both business needs and domain

knowledge.

156 Requirements Eng (2011) 16:133–160

123

www.manaraa.com

6.1.4 Discussion

Our work shares many similarities with the aforementioned

researches. First, we also advocate the use of ontologies as

a product of the RE phase. Second, we proposed a process

for supporting RE that strongly relies on the use of

Ontologies. Finally, we also use the inference capabilities

associated with ontologies as a tool to provide validation of

RE knowledge. However, our approach provides unique

features that differentiate it from the aforementioned

researches. While Ontologies are a good approach for

defining a common language to create and share a domain

as well as for harmonizing different ontology engineering

approaches, ontologies demand additional modeling effort,

which must be balanced by savings at other activities [80,

81]. Thus, a key to promoting the advantages of ontologies

is the integration of ontological knowledge across the

software engineering lifecycle. Our approach achieves such

integration through the use of MDA transformations that

automatically links ontological models with the other

models in the software engineering lifecycle. Even though

ontologies are a powerful mechanism to be used in the

requirements representation and validation, as can be seen

in the aforementioned works, such representation alone is

not suitable for all the different stakeholders (as well as

activities) involved in a RE process. For instance, ontolo-

gies are not suitable to acquire knowledge from the

stakeholder; therefore, it is not able to directly address

scope issues. Our MDA multi-viewed approach deals with

such issue, providing different views for each type of actor

and activity involved in the RE process. Moreover, our

approach is seamless integrated with traditional RE pro-

cesses and fully supported by open-source tools. Further-

more, the proposed MDA approach provides a simple and

useful traceability scheme that facilitates dealing with

requirements evolution and managing conflicts require-

ments, dealing with volatility issues. The use of ontologies

alone does not provide any facilities to tackle the inherent

volatility of requirements.

6.2 Controlled natural languages, model driven,

and requirements engineering

Since natural language-oriented models are widely used in

requirements modeling, there are several works that pro-

pose (semi-)automatic transformation to map the require-

ments models into conceptual object models [28, 39, 74].

More recently, Controlled Natural Languages (CNLs) have

been integrated within model driven–based processes.

Controlled natural languages are subsets of natural lan-

guage whose grammars and dictionaries have been

restricted in order to reduce or eliminate both ambiguity

and complexity [82], intrinsic of natural languages [29]

uses CNL integrated in an MDA approach for unifying the

ideas of expressing requirements in a language close to

natural, building Platform Independent Models for soft-

ware components, and implementing the components via

Platform Specific Models. The full transformation mapping

uses a formal system of rules expressed in Two-Level

Grammar (TLG) [83]. TLG is an object-oriented require-

ments specification language, based on natural language,

with enough formalism to derive the corresponding

implementation. The technique used on the transformation

consists on identifying objects and relations on the problem

domain based on nouns and the verbs between them. This

grammar was initially created as a language to specify

programming languages. With the emergence of executable

models, it became an executable specification language,

allowing the transformation of requirements expressed in

natural language to a formal specification. Leal et al. [84]

propose a Controlled Natural Language named Natural

MDA language. Natural MDA is an action specification

language [85] with a high abstraction level that is aligned

to MDA objectives. The proposed language aims to raise

the systems specification abstraction level, to complement

UML and, as a consequence, to reduce the gap between the

business domain objects and programming language ele-

ments. The author developed two associated tools, specif-

ically designed to augment model-driven tools with Natural

MDA language. Kalnins et al. [86] present an approach

whose main goal is to show how transformations could be

used to support the full path from requirements to code, in

a model-driven development. In such work requirements

are specified in a controlled natural language named

Requirements Specification Language (RSL) [87] which

has been developed as part of the ReDSeeDS project [88].

The required behavior specification built in RSL is precise

enough so that this specification can be processed by model

transformations in order to generate initial versions of the

analyses and design models. All model-to-model transfor-

mations in the approach are implemented in model trans-

formation language MOLA [89].

6.2.1 Discussion

The aforementioned works shares the same idea of using

CNL to capture RE knowledge from stakeholders and also

the idea of using model-driven transformations to generate

software artifacts from the design phase. However, differ-

ently from our proposal, since the domain model of such

works is not ontology-based, they do not take advantage of

all the benefits provided by the use of an ontology-centric

approach as, for instance, the capability of requirements

validation. Therefore, differently from our proposal, such

works do not fully address the four open issues in RE dealt

with in this paper.

Requirements Eng (2011) 16:133–160 157

123

www.manaraa.com

7 Final remarks

The research on the area of RE has grown fast in the last

few years. In spite of this fact, there are still open issues. In

our work we initially identified such issues and investi-

gated the main existent initiatives that are addressing them.

Following we presented an approach that borrows several

ideas and techniques from these works and organizes them

in a novel way, generating an augmented RE process that

minimized the identified RE open issues. The proposed

process encompasses three key technologies: Model Drive

Architecture, Ontologies, and Controlled Natural Lan-

guages. The use of these three technologies allows repre-

senting requirements from the different perspectives of

all the stakeholders and development teams involved in

our RE process, as well as keeping such perspectives

synchronized.

The proposed RE process is supported by a tool built

using state of art techniques and technologies. Such tool

allows collecting requirements knowledge directly from

the stakeholder system descriptions. It also enables to

transform such high-level descriptions into lower abstrac-

tion level representations in order to meet the needs of the

development team. Also, the tool provides functionalities

to manipulate, search, and validate the requirement

knowledge base, thus facilitating the work of the devel-

opment team.

The evaluation of the proposed process and associated

tool was carried out based on a controlled experiment. The

results draw from our experiment indicate that a clear

communication channel between the teams involved in a

RE process minimizes most of the scope and communi-

cation issues, since both parts can express their view about

the system scope using a suitable notation. Moreover, the

proposed process and tool provide a simple, but useful,

traceability scheme. The experiment also shown that the

proposed knowledge validation technique was effective to

deal with volatility issues, once we were able to track down

requirements inconsistencies by using ontologies along

with reasoning mechanisms. Finally, the experiment shown

that our approach correctly integrates the different views

that represent the RE knowledge, once no information was

lost during the transformation.

We argue that this work is a promising step toward an

effective RE process that has proven the advantages of the

integrated use of MDA, ontologies, and CNL to cope with

current RE open issues. As so, it opens many different

research directions to be explored. First, this work did not

fully explore the potential of using ontologies in the RE

process. For instance, there are many techniques to build,

evaluate, and evolve domain ontologies, such as ontology

cleaning [64] and ontology merging [50] that can improve

the quality of the requirement knowledge base generated

by the proposed RE process. Second, the proposed RE

process did not include a comprehensive methodology to

solve conflicts. In the current version, the tool only iden-

tifies conflicting sentences and leaves the requirements

engineering in charge of solving them. Third, the proposed

RE process only assures the synchronization of the dif-

ferent views provided that the modifications only occur

from the higher to lower level models. That is, if a CNL

sentence is modified, such changes are automatically and

correctly propagated to the related ontology concept(s) and

UML class(es). However, the opposite situation is not

addressed in our current tool.

References

1. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap. In: ICSE—future of SE track, pp 35–46. http://

blueciteseer.ist.psu.edu/article/nuseibeh00requirement.html

2. González-Baixauli B, Laguna M, Crespo Y (2005) Product lines,

features, and MDD. In: EWMT 2005 workshop

3. Gómez-Pérez A, Fernández-López M, Corcho O (2004) Onto-

logical engineering: with examples from the areas of knowledge

management, e-commerce and the semantic web. Springer

4. Paulk M, Weber C, Curtis B, Chrissis M (1995) The capability

maturity model: guidelines for improving the software process.

Addison-Wesley/Longman Publishing, Boston

5. Pressman R (2005) Software engineering: a practitioner’s

approach. McGraw-Hill, New York

6. Sommerville I (2001) Software engineering, 6th edn. Addison-

Wesley, Harlow

7. Reubenstein H, Waters R (1991) The requirements apprentice:

automated assistance for requirements acquisition. IEEE Trans

Softw Eng 17(3):226–240

8. Walz D, Elam J, Curtis B (1993) Inside a software design team:

knowledge acquisition, sharing, and integration. Commun ACM

36(10):63–77

9. Wojcik R, Holmback H (1996) Getting a controlled language off

the ground at Boeing. In: Proceedings of the 1st international

workshop on controlled language applications, pp 22–31

10. Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990) Telos:

Representing knowledge about information systems. ACM Trans

Info Syst 8(4):325–362

11. Johnson W, Feather M, Harris D (1992) Representation and

presentation of requirements knowledge. IEEE Trans Softw Eng

18(10):853–869

12. Gordon M (2004) Knowledge representation: logical, philo-

sophical, and computational foundations. Distrib Syst Online

IEEE 5(1):9.1–9.3

13. Wang S, Jin L, Jin C (2006) Ontology definition metamodel

based consistency checking of UML models. In: 10th Interna-

tional conference on computer supported cooperative work in

design, pp 1–5

14. Donini F, Lenzerini M, Nardi D, Schaerf A (1996) Reasoning in

description logics. In: Brewka G (ed) Principles of knowledge

representation and reasoning. Studies in logic, language and

information. CLSI Publications, pp 193–238

15. Lenzerini M (1996) Tbox and abox reasoning in expressive

description logics. In: Proceedings of KR-96. Morgan Kaufmann,

pp 316–327

16. Christel M, Kang K (1992) Issues in requirements elicitation.

Carnegie Mellon University, Software Engineering Institute

158 Requirements Eng (2011) 16:133–160

123

http://blueciteseer.ist.psu.edu/article/nuseibeh00requirement.html
http://blueciteseer.ist.psu.edu/article/nuseibeh00requirement.html

www.manaraa.com

17. Carter RA, Anton AI, Dagnino A, Williams L (2001) Evolving

beyond requirements creep: a risk-based evolutionary prototyping

model. In: Proceedings of IEEE 5th international symposium on

requirements engineering (RE’01), pp 94–101

18. Espindola R, Lopes L, Prikladnicki R, Audy J (2005) Uma

Abordagem Baseada em Gestão do Conhecimento para Gerência

de Requisitos em Desenvolvimento Distribuı́do de Software. In:

VIII workshop on requirements engineering

19. Sage A, Palmer J (1990) Software systems engineering. Wiley,

New York

20. Macaulay L, Flower C, Kirby M, Hutt A (1990) USTM: a new

approach to requirements specification. Interact Comput

2(1):92–118

21. Antón A, Potts C (2001) Functional paleontology: system evo-

lution as the user sees it. In: Proceedings of the 23rd international

conference on software engineering. IEEE Computer Society,

pp 421–430

22. Stark G, Oman P, Skillicorn A, Ameele A (1999) An examination

of the effects of requirements changes on software maintenance

releases. J Softw Maintenance 11(5):293–310

23. Dubois E, Hagelstein J, Rifaut A (1989) Formal requirements

engineering with ERAE. Philips J Res 43(4):393–414

24. Al-Rawas A, Easterbrook S (1996) Communication problems in

requirements engineering: a field study

25. Bhat J, Gupta M, Murthy S, Technologies I (2006) Overcoming

requirements engineering challenges: lessons from offshore out-

sourcing. Softw IEEE 23(5):38–44

26. Goguen JA, Linde C (1993) Techniques for requirements elimi-

nation. In: Proceedings of international symposium on require-

ments engineering. IEEE CS Press, Los Alamitos, pp 152–164.

http://blueciteseer.ist.psu.edu/goguen93techniques.html

27. Nurmuliani N, Zowghi D, Powell S (2004) Analysis of require-

ments volatility during software development life cycle. In:

Software engineering conference, 2004. Proceedings 2004 Aus-

tralian, pp 28–37

28. Breitman K, do Prado Leite J (2004) Lexicon based ontology

construction. In: LNCS, vol 19–34

29. Bryant B, Lee B, Cao F, Zhao W, Burt C, Gray J, Raje R, Olson

A, Auguston M (2003) From natural language requirements to

executable models of software components. In: Proceedings of

the monterey workshop on software engineering for embedded

systems: from requirements to implementation, pp 51–58.

http://blueciteseer.ist.psu.edu/bryant03from.html

30. Debnath N, Leonardi M, Mauco M, Montejano G, Riesco D

(2008) Improving model driven architecture with requirements

models. In: 5th International conference on information tech-

nology: new generations, 2008 (ITNG 2008), pp 21–26

31. van Lamsweerde A (2008) Requirements engineering: from craft

to discipline. In: Proceedings of the 16th ACM SIGSOFT inter-

national symposium on foundations of software engineering.

ACM, New York, pp 238–249

32. White S (2004) Process modeling notations and workflow pat-

terns. In: Workflow handbook, pp 265–294

33. Kavakli E, Loucopoulos P (2008) Goal driven requirements

engineering: evaluation of current methods. In: Proceedings of

8th CAiSE/IFIP8, vol 1

34. Kaiya H, Saeki M (2006) Using domain ontology as domain

knowledge for requirements elicitation. In: Proceedings of the

14th IEEE international requirements engineering conference

(RE’06). IEEE Computer Society, Washington, pp 186–195

35. Gotel O, Finkelstein C (1994, April) An analysis of the require-

ments traceability problem. In: Proceedings of the 1st interna-

tional conference on requirements engineering, pp 94–101

36. Gotel O, Finkelstein A (1997, January) Extended requirements

traceability: results of an industrial case study. In: Proceedings of

the 3rd IEEE international symposium on requirements engi-

neering, pp 169–178

37. Cleland-Huang J, Chang C, Christensen M (2003) Event-based

traceability for managing evolutionary change. IEEE Trans Softw

Eng 29(9):796–810

38. Egyed A (2003) A scenario-driven approach to trace dependency

analysis. IEEE Trans Softw Eng 29(2):116–132

39. Fuchs NE, Schwertel U, Schwitter R (1999, June) Attempto

controlled English—not just another logic specification language.

In: Flener P (ed) Logic-based program synthesis and transfor-

mation. No. 1559 in Lecture Notes in Computer Science. 8th

International workshop LOPSTR’98. Springer, Manchester

40. Mellor S (2004) MDA distilled: principles of model driven

architecture. Addison-Wesley Professional, Canada

41. Kleppe A, Warmer J, Bast W (2003) MDA explained: the model

driven architecture: practice and promise. Co., Inc. Addison-

Wesley/Longman Publishing, Boston

42. Wohlin C, Höst M, Henningsson K (2003) Empirical research

methods in software engineering. In: Conradi R, Wang AI (eds)

Empirical methods and studies in software engineering, Lecture

Notes in Computer Science. Springer, Heidelberg, pp 7–23

43. OMG (2009) OMG unified modeling language TM (OMG UML),

Superstructure. http://www.omg.org/cgi-bin/doc?formal/09-02-02.

pdf. Accessed 10 May 2010

44. Rumbaugh J, Jacobson I, Booch G (2004) Unified modeling

language reference manual, The Pearson Higher Education

45. Breitman K, do Prado Leite J (2003, September) Ontology as a

requirements engineering product. In: 11th IEEE international

conference on requirements engineering proceedings, pp 309–319

46. Kaljurand K (2008) ACE view—an ontology and rule editor

based on Attempto Controlled English. In: 5th OWL experiences

and directions workshop (OWLED 2008). Karlsruhe, 26–27

October, 12 pp

47. Smith M, Welty C, McGuinness D (2004) Owl web ontology

language guide. W3C recommendation 10

48. Stumme G, Maedche A (2001) FCA-merge: bottom-up merging

of ontologies. In: 7th international conference on artificial intel-

ligence (IJCAI01), pp 225–230

49. Steve G, Gangemi A, Pisanelli D (1998) lntegrating medical

terminologies with ONIONS methodology. In: Information

modelling and knowledge bases, vol IX

50. Noy N, Musen M (2000) PROMPT: algorithm and tool for auto-

mated ontology merging and alignment. In: Proceedings of the

national conference on artificial intelligence (AAAI), pp 450–455

51. Knublauch H (2004) Ontology-driven software development in

the context of the semantic web: an example scenario with pro-

tege/OWL. In: Proceedings of MDSW2004, Monterey

52. Sirin E, Parsia B (2004) Pellet: an owl dl reasoner. In: 2004

International workshop on description logics. Citeseer, p 212

53. Tsarkov D, Horrocks I (2006) FaCT?? description logic rea-

soner: system description. In: Automated reasoning, pp 292–297

54. Fuchs NE, Kaljurand K, Kuhn T (2008) Discourse representation

structures for ACE 6.0. Tech. Rep. ifi-2008.02, Department of

Informatics, University of Zurich, Zurich

55. Colomb R, Raymond K, Hart L, Emery P, Welty C, Xie G,

Kendall E (2006) Version 3.3: The object management group

ontology definition metamodel. In: Ontologies for software

engineering and software technology, pp 1–25

56. Jouault F, Allilaire F, Bézivin J, Kurtev I, Valduriez P (2006)

ATL: a QVT-like transformation language. In: Companion to the

21st ACM SIGPLAN symposium on object-oriented program-

ming systems, languages, and applications. ACM, p 720

57. Catalog Of OMG Modeling and metadata specifications. Avail-

able at: http://www.omg.org/technology/documents/modeling_

spec_catalog.htm#UML

Requirements Eng (2011) 16:133–160 159

123

http://blueciteseer.ist.psu.edu/goguen93techniques.html
http://blueciteseer.ist.psu.edu/bryant03from.html
http://www.omg.org/cgi-bin/doc?formal/09-02-02.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-02.pdf
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

www.manaraa.com

58. MOF 2.0/XMI (XML Metadata Interchange) Mapping specifi-

cation, v2.1.1. OMG Available Specification, formal/07-12-01.

Available at http://www.omg.org/docs/formal/07-12-01.pdf

59. Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled

experiments in software engineering. In: International symposium

on empirical software engineering, p 10

60. Basili V, Caldiera G, Rombach H (1994) The goal question

metric approach. Encycl Softw Eng 1:528–532

61. Briand L, Penta MD, Labiche Y (2004) Assessing and improving

state-based class testing: a series of experiments. Trans. Softw

Eng 30(11):770–793

62. Gravino C, Scanniello G, Tortora G (2010) An empirical inves-

tigation on dynamic modeling in requirements engineering. Lect

Notes Comput Sci 5301/2010:615–629. doi:10.1007/978-3-540-

87875-9_43

63. Soares S, Laureano E, Borba P (2002) Implementing distribution

and persistence aspects with aspect. J ACM SIGPLAN Notices

37(11):174–190

64. Guarino N, Welty C (2002) Evaluating ontological decisions with

OntoClean. Commun ACM 45(2):65

65. Oppenheim AN (1992) Questionnaire design, interviewing and

attitude measurement. Pinter, London

66. Gliem JA, Gliem RR (2003, October) Calculating, interpreting,

and reporting Cronbach’s Alpha reliability coefficient for Likert-

type scales. In: Midwest research-to-practice conference in adult,

continuing, and community education, pp 82–88

67. Cronbach LJ (1951) Coefficient alpha and the internal structure of

tests. Psychometrika 16:297–334

68. Hatcher L (1994) A step-by-step approach to using the

SAS(R) system for factor analysis and structural equation mod-

eling. SAS Institute, Cary

69. Nunnaly J (1978) Psychometric theory. McGraw-Hill, New York

70. IBM SPSS Statistics 19. Available at: http://www.spss.com.

Accessed Dec 2010

71. Gašević D, Kaviani N, Milanović M (2009) Ontologies and

software engineering. In: Staab S, Studer R (eds) International

handbooks on information systems, part 5, handbook on ontolo-

gies, Springer, Berlin, ISBN 978-3-540-70999-2 (print) 978-3-

540-92673-3 (online)

72. Maedche A (2002) Ontology learning for the semantic web.

Kluwer, Boston

73. Leite JCSP, Franco APM (1993) A strategy for conceptual model

acquisition. In: 1st IEEE international symposium on require-

ments engineering. IEEE Computer Society Press, Los Alamitos,

pp 243–246

74. Vongdoiwang W, Batanov DN (2006) An ontology-based pro-

cedure for generating object model from text description. Pub-

lished in journal: Knowl Inf Syst (KAIS): February 2006. Knowl

Inf Syst (2006):93–108. doi:10.1007/s10115-005-0218-5

75. Völkel M (2006, May) RDFReactor—from ontologies to prog-

ramatic data access. In: Proceedings of the Jena user conference,

2006. HP, Bristol

76. Won Lee S, Gandhi R (2005) Ontology-based active require-

ments engineering framework. In: Proceedings of the 12th Asia-

Pacific software engineering conference, pp 481–490

77. Dobson G, Sawyer P (2006) Revisiting ontology-based require-

ments engineering in the age of the semantic web. In: Dependable

requirements engineering of computerised systems at NPPs

78. Lin J, Fox MS, Bilgic T (1996) A requirement ontology for

engineering design. In: Proceedings of 3rd international confer-

ence on concurrent engineering, pp 343–351. A revised version

appears in Concurr Eng Res Appl 4(4):279–291

79. Zong-yong L, Zhi-xu W, Ai-hui Z, Yong X (2007, July) The

domain ontology and domain rules based requirements model

checking. Int J Softw Eng Appl 1(1):89–100

80. Oberle D (2006) Semantic management of middleware, vol I of

The semantic web and beyond. Springer, New York

81. Happel H-J, Seedor S (2006) Applications of ontologies in soft-

ware engineering. In: International workshop on semantic web

enabled software engineering (SWESE’06)

82. Kittredge RI (2003) Sublanguages and controlled languages. In:

Mitkov R (ed) The Oxford handbook of computational linguis-

tics. Oxford University Press, Oxford, pp 430–447

83. Bryant B, Lee B (2002) Two-level grammar as an object-oriented

requirements specification language. In: Proceedings of the 35th

annual Hawaii international conference on system sciences

(Hicss’02)-vol 9 (7–10 Jan 2002), HICSS. IEEE Computer

Society, Washington, p 280

84. Leal LN, Pires PF, Campos MLM, Delicato FC (2006) Natural

MDA: controlled natural language for action specifications on

model driven development, on the move to meaningful internet

systems 2006: CoopIS, DOA, GADA, and ODBASE, doi:

10.1007/11914853_33, pp 551–568

85. Raistrick C, Francis P, Wright J (2004) Model driven architecture

with executable UML. Cambridge University Press, ISBN 0-521-

53771-1

86. Kalnins A, Kalnina E, Celms E, Sostaks E (2010) From

requirements to code in a model driven way, Lecture Notes in

Computer Science v. 5968/2010 (Advances in Databases and

Information Systems), pp 161–168. Springer, Berlin, ISBN:

978-3-642-12081-7, ISSN: 0302-9743 (print), pp 1611–3349

(online), doi:10.1007/978-3-642-12082-4

87. Smialek M, Bojarski J, Nowakowski W et al (2007) Comple-

mentary use case scenario representations based on domain

vocabularies. In: Engels G, Opdyke B, Schmidt DC, Weil F (eds)

MODELS 2007, LNCS, vol 4735. Springer, Heidelberg,

pp 544–558

88. ReDSeeDS, Requirements Driven Software Development System

Project. EU 6th framework IST project (IST-33596),

http://www.redseeds.eu

89. Kalnins A, Barzdins J, Celms E (2005) Model transformation

language MOLA. In: Aßmann U, Aksit M, Rensink A (eds)

MDAFA 2003, LNCS, vol 3599. Springer, Heidelberg, pp 62–76

160 Requirements Eng (2011) 16:133–160

123

http://www.omg.org/docs/formal/07-12-01.pdf
http://dx.doi.org/10.1007/978-3-540-87875-9_43
http://dx.doi.org/10.1007/978-3-540-87875-9_43
http://www.spss.com
http://dx.doi.org/10.1007/s10115-005-0218-5
http://dx.doi.org/10.1007/11914853_33
http://dx.doi.org/10.1007/978-3-642-12082-4
http://www.redseeds.eu

www.manaraa.com

Copyright of Requirements Engineering is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

